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Abstract. In recent years, a new research area called order-fairness has
emerged within State Machine Replication (SMR). Its goal is to pre-
vent malicious processes from reordering transactions, ensuring that the
SMR output reflects the local orderings observed by processes. One of
the advanced approaches to addressing this challenge is fair separability,
which is designed to mitigate cyclic dependencies present in transaction
dependency graphs. However, in the existing implementation of fair sep-
arability, a transaction input by a Byzantine process can be output with
only O(1) resources, whereas outputting a transaction input by a correct
process requires O(n) resources. This vulnerability exposes the protocol
to chain-quality attacks.
In this paper, we propose an implementation of fair separability where
the cost of outputting transactions remains consistent for the inputs of
all processes, which enhances resilience to chain-quality attacks.

1 Introduction

The advent of blockchain technology [18] has led to the spread of Decentralized
Finance (DeFi), and attracted attention to its underlying technology, namely
State Machine Replication (SMR) [21]. In particular, it has been observed that
malicious users were leveraging the lack of ordering constraints in the SMR
specification and reordering transactions for financial gain [4]. This lack of or-
dering constraints has been characterized as a missing property in the SMR
specification [13] and has enabled malicious users to reorder transactions and
rip hundreds of millions of dollars of profit from DeFi users [20]. To mitigate
reordering attacks, various efforts have been made towards implementing a fair
ordering of transactions [3, 7, 12,13,15,24–26].

There are essentially two ordering paradigms. The first paradigm, denoted
relative ordering, uses dependency graphs between transactions to compute the
final ordering. However, this approach can lead to cyclic dependencies [15, 26]
and to a weakening of liveness [3]. The second paradigm, denoted absolute or-
dering, assigns unique ordering indicators to transactions and sorts the final
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output based on these ordering indicators. Absolute ordering was introduced
in [26] under the name ordering linearizability and is directly inspired by the
concept of linearizability [11]. Ordering linearizability constrains the output
of SMR by requiring that if S1 and S2 are the sets of sequence numbers as-
signed by correct processes to two transactions t1 and t2, respectively, and that
maxs∈S1

(s) < mins∈S2
(s), then t1 must be executed (ordered) before t2. In

the presence of f malicious or Byzantine processes, ordering linearizability is
achieved by Pompē [26] by outputting each transaction t with a sequence num-
ber that is the median value (i.e., the f + 1th value) of a set of 2f + 1 sequence
numbers assigned to t by distinct processes.

Unfortunately, ordering linearizability only applies to committed transac-
tions. As a result, the ordering constraint may vanish in adversarial cases. For
instance, in Pompē, a Byzantine process may collect a set of sequence numbers
for its transaction, and then abort the protocol. Although its transaction may
have been assigned a sequence number by all correct processes, it will never be
output. Furthermore, even if the sender is correct, an unstable network may lead
to the expiration of the ordering indicators collected by the sender. In both cases,
the ordering requirement vanishes. To address this shortcoming, a strengthened
and unconditional formulation of ordering linearizability is introduced under the
denomination of fair separability [26]. Like ordering linearizability, fair separa-
bility requires that if maxs∈S1(s) < mins∈S2(s), then t1 must be ordered before
t2. Unlike, ordering linearizability, fair separability applies to all the transactions
that have been observed by correct processes.

SMRFS [8] is the only known implementation of fair separability and, fur-
thermore, it also achieves resilience to downgrade attacks. However, to do so,
processes must rebroadcast each transaction they observe. As a result, SMRFS
outputs every transaction observed by any correct process, even if it was sent
by a Byzantine process to a single correct process. Hence, this approach enables
a Byzantine process to ensure that each of its transactions t is output by only
sending t to a single correct process, and thus at a constant cost of O(1) network
resources. In comparison, a correct process broadcasts its transactions at a cost
of O(n) network resources. If both correct and Byzantine processes have equal
networking capabilities, SMRFS becomes vulnerable to attacks on chain quality
where transactions sent by Byzantine processes dominate the output.

It has remained an open problem whether the approach in [8] is necessary
for fair separability, or if a protocol for fair separability could be devised that
does not require to output every transaction submitted by a Byzantine process.
The crux of the problem resides in the fact that when a correct process pi has
assigned a sequence number s to a transaction t, then s could eventually be used
as the median value of a set of 2f + 1 sequence numbers for t, and thus t and
s must somehow be taken into consideration when deciding the output of the
SMR. To solve this, our protocol first builds on the observation in [8] that when
fair separability requires that a transaction t1 be ordered before a transaction
t2, then any set of n − f distinct processes contains a set P1 of at least f + 1
correct processes, and the f + 1th value of the sequence numbers assigned to t1
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by processes in P1 is lower than the median value of any set of 2f + 1 sequence
numbers assigned to t2. Then, we leverage the commit protocol presented in [25]
to define commit conditions that do not violate fair separability. Finally, we
integrate these ideas into an SMR protocol that ensures fair separability.

To ease the understanding of our algorithm, we first present in Section 4
a safe version of our algorithm that may lose liveness in certain scenarios. We
then show how to fix liveness in Section 5 in order to satisfy both the safety and
liveness properties of SMR. More formally, our contribution is twofold.

– We present an implementation of fair separability that preserves chain qual-
ity: submitting a transaction has the same asymptotic cost for all processes
and the output requires input from a quorum of processes.

– We show that fair separability can be achieved without having to output
every transaction observed by a correct process, which is of independent
theoretical interest.

The rest of this paper is structured as follows. Section 2 discusses related
work. In Section 3, we introduce our computational model. We begin by pre-
senting a safe implementation of fair separability in Section 4. We then address
liveness in Section 5. Section 6 presents our results along with the associated
proofs. Finally, we summarize our work and conclude in Section 7.

2 Related Work

Daian et al. [4] were the first to observe that the lack of ordering constraints
in SMR was exploited for financial profit in blockchains such as Ethereum [22].
This observation brought a line of work focused on order-fairness in SMR and
initiated by Kelkar et al. [13]. The ordering paradigm in [13] requires that each
process FIFO-broadcasts [2] the transactions that it receives. The final ordering
is then computed based on the ordering dependencies between processes whereby
a transaction t1 must be ordered before a transaction t2 if a specified proportion
of processes have broadcast t1 before t2. In [15], Kursawe analyzes the limitations
of this paradigm, and presents issues related to liveness when using relative
ordering and block-order-fairness. Specifically, the approach in [13] can lead to
cyclic dependencies between transactions, and these cycles can affect the liveness
of the protocol. Cachin et al. introduce the notion of differential order-fairness [3]
where the ordering requirements for two transactions are based on a differential
number of processes instead of a proportion of processes. Using results from
differential consensus [6], Cachin et al. show the lower bound in the number of
ordering preferences required to enforce any relative ordering.

To circumvent cyclic dependencies in the relative ordering model, Zhang et
al. [26] introduce with Pompē a new ordering paradigm where instead of rely-
ing on dependencies between transactions, transactions are assigned a unique
sequence number that is used to order them. This new paradigm is named or-
dering linearizability. In Pompē, the sequence number used for each transaction
is the median value of a set of 2f + 1 signed sequence numbers, thus ensuring
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that the sequence number used for a transaction resides in the range of sequence
numbers observed by correct processes. In [15], it is noted that ordering lineariz-
ability only puts constraints on the ordering of committed transactions, and
introduces a stronger notion denoted by fair separability [12]. Fair separability
uses the same ordering paradigm as ordering linearizability, but it applies to
all the transactions observed by correct processes. In [8], Gramoli et al. pro-
vide the first implementation of an SMR with fair separability and combine it
with resilience to downgrade attacks. As a result, their protocol is vulnerable to
attacks on chain quality as it outputs every transaction observed by a correct
process. In this paper, we focus instead on achieving fair separability with re-
silience to attacks on chain quality. We build upon the observations presented in
SMRFS [8] and borrow from Lyra [25] the use of pending transactions, and show
that achieving fair separability does not require outputting all the transactions
observed by correct processes. Our approach is relevant in cases where chain
quality is more important than throughput.

3 Model

3.1 Processes & Network

We assume a system of n processes denoted P = {pi}i∈[n], where [n] = {1, . . . , n}.
Processes that follow the prescribed protocol are denoted correct, and processes
that can deviate arbitrarily from the prescribed protocol are denoted Byzan-
tine [16]. Let f = ⌈n3 ⌉ − 1 denote the upper bound on the number of Byzantine
processes. We also assume that the network is partially synchronous [5] whereby
the network is behaving asynchronously up to an unknown time denoted global
stabilization time (GST). After GST, the network behaves synchronously and
messages are delivered within a known bound ∆. Finally, we assume a fully con-
nected network and the existence of authenticated and reliable channels between
each pair of processes. Authentication ensures that no Byzantine process can
impersonate a correct process, and reliability guarantees that a message sent by
a correct process is eventually delivered.

3.2 Cryptography

We assume the existence of a public key infrastructure (PKI) that enables pro-
cesses to establish their identities. Building upon PKI, we consider a digital
signature (DS) scheme that ensures the authenticity and integrity of messages.
This scheme allows processes to sign their messages and produce a signature
σ using the DS.Sign algorithm, and then verify associated signatures using the
DS.Verify algorithm. A digital signature scheme consists of the following algo-
rithms.

– {sk i}i∈[n], {pk i}i∈[n] ← DS.Setup(n, 1λ). Given the number of processes n
and a security parameter λ as input, this algorithm produces the set of
public keys {pk i}i∈[n] and the set of secret keys {sk i}i∈[n] for the processes.
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– σ ← DS.Sign(sk i, v). The algorithm takes the secret key sk i of a process pi
and a value v as input, and it outputs a signature for the value v.

– true/false← DS.Verify(pk i, σ, v). The algorithm takes the public key pk i of a
process pi, a signature σ, and a value v as input, and it determines whether
the signature was generated by pi’s secret key for the value v.

We also assume the existence of a (f, n) threshold signature (TS) scheme
where processes can create signature shares for any value via an algorithm
TS.SignShare, and then combine f+1 shares into a full signature using TS.Combine.
A TS scheme consists of the following algorithms.

– {tsk i}i∈[n], {tpk i}i∈[n], vk ← TS.Setup(n, f, 1λ). Given the number of pro-
cesses n, the threshold f , and a security parameter λ as input, this algorithm
produces a set of threshold public keys {tpk i}i∈[n], a set of threshold secret
keys {sk i}i∈[n], and a public verification key vk .

– π ← TS.SignShare(tsk i, v). The algorithm takes the threshold secret key tsk i

of a process pi and a value v as input, and it outputs a signature share for
the value v.

– true/false ← TS.VerifyShare(tpk i, π, v). The algorithm takes the threshold
public key tpk i of a process pi, a signature share π, and a value v as input,
and it determines whether the signature share was generated for v using pi’s
threshold secret key.

– Π ← TS.Combine({tsk i}, {πi}, v). The algorithm takes the threshold secret
keys of processes, a set of valid signature shares for v of size f + 1, and the
value v as input, and it outputs a full signature for the value v.

– true/false← TS.Verify(vk , Π, v). The algorithm takes the verification key vk ,
a full signature Π, and a value v as input, and it determines whether the
full signature is valid for the value v.

At the onset of the protocol, each process pi is provided with its secret
key sk i for the DS scheme, along with the sets of public keys {pk i}i∈[n] for
DS. Additionally, it is provided with its threshold secret key tsk i for the TS
scheme, accompanied by public keys {tpk i}i∈[n], and the verification key vk .
Finally, we assume the existence of a collision-resistant hash function denoted
Hash and of a polynomially-bounded adversary that cannot break the security
of our cryptographic schemes.

3.3 Secure Broadcast

The secure broadcast protocol is a multi-shot version of the reliable broadcast
protocol [1] where for each index k, a process pi secure-broadcasts a value v, and
all correct processes secure-deliver v for the index k of pi.

Definition 1 (Secure Broadcast Problem). A secure broadcast protocol
ensures the following properties.

– SB-Validity. If a correct process pi secure-broadcasts a value v for its index
k, then every correct process secure-delivers v for the index k of pi.
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– SB-Integrity. If a correct process pj secure-delivers a value v for the index
k of pi and that pi is correct, then pi has secure-broadcast v.

– SB-Agreement. If a correct process secure-delivers the value v for the index
k of pi, then every correct process eventually secure-delivers v for the index
k of pi, and no correct process secure-delivers for the index k of pi a value
v′ such that v′ ̸= v.

Note that in the definition of secure broadcast, a process is not required to
use consecutive values of indices, and thus secure broadcast is different than
FIFO broadcast [10]. Our algorithm in Section 5 leverages secure broadcast to
build proofs that guarantee that for an index k, a process has secure broadcast
a value for all the previous values k′ ≤ k.

3.4 Byzantine Agreement

A leader-based Byzantine agreement protocol [19] enables all correct processes
to agree on a unique value proposed by a leader in the presence of Byzantine
processes. We further require that the decided value satisfies an external validity
predicate [2]. In this paper, we define the predicate γ that holds for any output
(V ) that contains inputs from at least 2f+1 distinct processes, each accompanied
by a valid signature. More formally,

γ : V 7→ |V | ≥ 2f + 1 ∧ ∀ (i, vi, σ) ∈ V,DS.Verify(pk i, σ, vi) = true.

Definition 2 (Byzantine Agreement Problem). A Byzantine agreement
protocol ensures the following properties.

– BA-Termination. Each correct process eventually outputs a value V .
– BA-Agreement. All correct processes output the same value.
– BA-External-Validity. If a correct process outputs V , then γ(V ) holds.

Throughout this paper, the leader initializes a consensus instance with iden-
tifier id and input value v by calling Consensus-Propose(id, v).

3.5 State Machine Replication

The state machine replication (SMR) paradigm enables correct processes to agree
on a total ordering of transactions. Let Logi denote the set of transactions output
by an SMR protocol at process pi.

Definition 3 (SMR Problem). An SMR protocol ensures the following prop-
erties.

– SMR-Safety. If two correct processes pi and pj output Logi and Logj, re-
spectively, then either Logi is a prefix of Logj, or Logj is a prefix of Logi.

– SMR-Liveness. If a correct process submits a transaction t to an SMR
protocol, then t is eventually added to the Logi of every correct process.
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Definition 4 (Partial Order). If a transaction t1 is ordered before a transac-
tion t2 in the output of an SMR protocol, then we denote this by t1 ≺ t2.

In this paper, the output of the SMR is divided into logical epochs. Processes
start with epoch 1 and use agreement to output the set of transactions in each
consecutive epoch. A correct process pi delivers the transactions decided in an
epoch e only if pi has already delivered the transactions in every epoch e′ < e.
Furthermore, our protocol relies on the ordering paradigm introduced in [26]
whereby each transaction t ∈ T is output with a sequence number s ∈ N.
Consequently, transactions output during an epoch are ordered based on their
respective sequence numbers. Let t1 and t2 represent two transactions output
during an epoch with their respective sequence numbers s1 and s2. If s1 < s2,
then t1 ≺ t2.

3.6 Fair Separability

The term fair separability was introduced in [12] to denote the strengthened
version of ordering linearizability [26]. Ordering linearizability extends the SMR
specification by adding constraints to the ordering of transactions. However,
ordering linearizability only applies to committed transactions. In contrast, fair
separability applies to all the transactions observed by correct processes. In
ordering linearizability, to order a transaction t, processes must first assign a
sequence number to t, and once at least 2f+1 processes have assigned a sequence
number to t, t might be output with a sequence number that is the median value
of its set of 2f + 1 assigned sequence numbers. In this paper, each process pi
has a local sequence number seqNumi that it uses to assign sequence numbers
to the transactions that it observes. By extension, we denote by seqNumi(t) the
sequence number assigned by process pi to the transaction t. Let seqMin(t) (resp.
seqMax(t)) denote the lowest (resp. highest) sequence number assigned by any
correct process to a transaction t.

Definition 5 (Fair Separability). ∀ t1, t2 ∈ T ,

seqMax(t1) < seqMin(t2)⇒ t1 ≺ t2.

Note that Definition 5 implies that all correct processes have assigned se-
quence numbers to both t1 and t2. For instance, if a Byzantine process does not
send its transaction t to all correct processes, then the behavior of fair separabil-
ity is undefined. In [8], to ensure fair separability, all correct processes eventually
assign a sequence number and output a transaction t even if t was only sent by
its Byzantine issuer to a single correct process. In this paper, we show that to
ensure fair separability, it is not necessary to output every transaction observed
by a correct process.

3.7 Notations

We denote Send(tag, x) the operation of sending to a process a message that
consists of a tag tag and a payload x. We denote Broadcast(tag, x) the operation
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of sending the message (tag, x) to all processes. Finally, we denote Median(X)
the (f + 1)th value of the elements of the set X sorted in ascending order. We
define the Median function in this manner to establish a consistent approach to
access either the (f +1)th value of a set of 2f +1 values (i.e., the actual median
value), or the (f + 1)th value within a set of at least f + 1 values (i.e., a value
lower bounded by a correct process). Table 1 provides a summary of the symbols
and notations used in this paper.

Table 1. List of symbols and notations.

Symbol Description
x∥y concatenation of the values x and y.
(x, y, z) tuple consisting of the three ordered values x, y, and z.
A[x] element associated to the key x in the associative array A.
|A| number of elements contained in A.
A[1..x] the x first elements of A.
P The set of all processes.
T The set of all possible transactions.
∆ Bound on message delays after GST.
seqNumi Local sequence number of pi.
Logi Transactions committed by pi.
seqMini(t) Lowest sequence number assigned to t by any correct process.
seqMaxi(t) Highest sequence number assigned to t by any correct process.
Median(S) (f + 1)th value of the set S.

4 Safe Implementation

In this section, we present our protocol for SMR with fair separability. To sim-
plify the algorithms, we omit all the cryptographic verifications and assume that
correct processes systematically perform the necessary verifications and discard
any invalid message.

4.1 Overview

Like Pompē, our protocol starts with an ordering phase that is followed by a
consensus phase. However, in our protocol, processes need to exchange additional
information such as their sets of pending transactions in order to achieve fair
separability. Furthermore, after the consensus step, an additional delivery step
ensures that transactions are committed in a way that preserves fair separability.
Our protocol proceeds in consecutive epochs. All correct processes start at epoch
1, and output a set of transactions for the current epoch before proceeding to
the next epoch. The set of transactions output during an epoch is appended to
the SMR Log. Each epoch comprises the three following steps.
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1. Ordering. Processes assign sequence numbers to the transactions that they
receive and secure-broadcast the sequence numbers that they have assigned.
When a process secure-delivers 2f +1 sequence numbers for the same trans-
action t, it orders t.

2. Consensus. Processes agree on a tentative set of transactions to be output
during the epoch. Each decided transaction is associated with a sequence
number that is the median value of 2f + 1 sequence numbers.

3. Delivery. Processes select among the previously decided set the transactions
that can be committed without violating fair separability.

4.2 Ordering Step

The ordering step is presented in Algorithm 1. This step aims at collecting
sequence numbers for transactions in order to enable the ordering of these trans-
actions during the delivery phase based on their assigned sequence numbers. A
process submits a transaction t to the protocol by broadcasting (submit, t) (line
12). When a process pi receives the transaction t, pi assigns a sequence number
to t and adds t to its set of pending transactions (line 18). The set of pending
transactions is used to keep track of the sequence numbers assigned by correct
processes. This is done to preserve fair separability because the median value of
a set of 2f + 1 sequence numbers could have been assigned by any correct pro-
cess. Process pi then secure-broadcasts t and the signed sequence number that
it has assigned to t (line 20). This step enables all correct processes to have a
consistent view of the sequence numbers assigned by processes. When a correct
process pi has secure-delivered at least 2f + 1 signed sequence numbers for a
transaction t, pi adds t and its associated set of sequence numbers to its set of
ordered transactions (line 25).

To ensure fair separability, it is sufficient that the output of each epoch con-
tains the union of the sets of pending and ordered transactions of at least 2f +1
processes (cf. Theorem 2). However, doing so naively would make the protocol
vulnerable to an arbitrary increase in its communication complexity. If a Byzan-
tine process were to send a transaction t to less than f + 1 correct processes,
t would be broadcast as part of their pending sets, but could never be output.
Transactions sent in this way could indefinitely increase the sizes of the messages
sent by processes to report their pending transactions. We thus devise a scheme
that enables correct processes to notify of their pending transactions using a con-
stant size. Intuitively, the pending set of a process pj is the set of transactions
associated with the sequence numbers secure-broadcast by pj for the transac-
tions observed by pj minus the transactions that have already been committed.
More specifically, when a correct process pi secure-delivers the sequence number
s from pj , it computes the index k (line 26) of the highest sequence number
for uninterrupted secure-deliveries from pj (i.e., ∀ k′ ≤ k, delivered [j][k′] ̸=⊥).
Process pi then send to pj a threshold signature for index k (line 31). By collect-
ing these shares, pi can build a proof (line 36) for an uninterrupted history of
assigned sequence numbers, and where each index is guaranteed secure-delivery
due to the SB-Agreement property.
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Algorithm 1 Ordering step at process pi
1: State
2: seqNumi ← 1 ▷ local sequence number of pi
3: seqNumSet : [T → []]← ∅ ▷ sequence numbers collected for each tx
4: delivered : [P → [N× {0, 1}λ]] ▷ deliveries from secure-broadcast
5: pending : [T × S × {0, 1}λ]← ∅ ▷ pending txs
6: ordered : [T × [S × {0, 1}λ]2f+1]← ∅ ▷ ordered txs
7: ackedDeliveries : [P → [N× {0, 1}]] ▷ shares sent to ack deliveries
8: ackShares : [N→ [{0, 1}λ]f+1] ▷ shares for history proofs
9: indexProof : [N→ {0, 1}λ]← ∅ ▷ secure-broadcast delivery proofs

10: witnessedTxs : [T ]∗ ▷ list of witnessed transactions

11: function submit(t)
12: Broadcast(submit, t) ▷ submit transaction t to the protocol

13: upon receiving (submit, t) do
14: if t /∈ witnessedTxs then
15: s← seqNumi ▷ assign sequence number s to t

16: seqNumi ← seqNumi + 1 ▷ increment seqNumi

17: σ ← DS.Sign(sk i, i∥Hash(t)∥s) ▷ sign s

18: pending ← pending ∪ (t, s, σ) ▷ mark as pending
19: witnessedTxs ← witnessedTxs ∪ t ▷ marked t as witnessed
20: SecureBroadcast(s, (t, s, σ)) ▷ secure-broadcast s for t once

21: upon secure-delivering (s, (t, s, σ)) from pj do
22: delivered [j][s] = (t, s, σ) ▷ update history of pj
23: seqNumSet [t]← seqNumSet [t] ∪ (s, σ) ▷ collect sequence numbers for t

24: if |seqNumSet [t]| ≥ 2f + 1 and t ̸= ⊥ then
25: ordered ← ordered ∪ (t, seqNumSet [t]) ▷ order t and the collected set

26: k ← max
∀x∈[1,ℓ],delivered[j][x]̸=⊥

(ℓ) ▷ longest continuous delivery from pj

27: for x ∈ [1, k] do
28: if ackedDeliveries[j][x] = 0 then ▷ index x of pj not acked
29: π ← TS.SignShare(tsk i, (j, x)) ▷ create share for index x of pj
30: ackedDeliveries[j][x] = 1 ▷ mark as acknowledged
31: Send(index, (j, x, π)) to pj

32: upon receiving (index, (i, k, π)) from pj do
33: ackShares[k][j]← π ▷ collect ack shares for index k of pi
34: if |ackShares[k]| ≥ f + 1 then ▷ ack by at least one correct process
35: Π ← TS.Combine({tsk}, ackShares[k], (i, k)) ▷ build history proof
36: indexProof [k]← Π ▷ store proof for pi’s continuous history
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Algorithm 2 Consensus step at process pi
37: State
38: epoch ← 1 ▷ consensus epoch
39: proposal : [N→ []] ▷ leader proposals for epochs

40: upon |ordered | ≥ 1 ∧ i ≡ epoch (mod n) do ▷ pi is leader of epoch
41: wait epoch e− 1 is decided do ▷ decide epochs successively
42: Broadcast(collect, e) ▷ request ordered and pending sets
43: Timer(2∆) ▷ set timer for 2∆

44: upon receiving (collect, e) from pj do
45: if pj is the leader of epoch e then ▷ j ≡ e (mod n)

46: maxPending ← max
(t,s,σ)∈pending

(s) ▷ latest pending local transaction

47: wait indexProof [maxPending ] ̸=⊥ do ▷ proof for index maxPending

48: L← {} ▷ initialize local submission
49: L.ordered ← ordered
50: L.maxPending ← maxPending
51: L.pendingProof← indexProof [maxPending ]
52: σ ← DS.Sign(sk i,Hash(i∥e∥L)) ▷ sign local submission L

53: Send(local, (e, L, σ, seqNumi)) to pj

54: upon receiving (local, (e, L, σ, seqNumj)) from pj do
55: proposal [e]← proposal [e] ∪ (j, L, σ, seqNumj) ▷ store pj ’s submission
56: if |proposal [e]| ≥ n− f ∧ Timer has expired then ▷ collected n− f

57: Consensus-Propose(e, proposal [e]) ▷ submit proposal to consensus

4.3 Consensus Step

The consensus step is detailed in Algorithm 2. When a process pi is the leader
of an epoch e and its set of ordered transactions is not empty, pi broadcasts a
message (collect, e) to collect sets of pending and ordered transactions from
processes (line 42). Upon receiving a collect message, a process pi responds to
the leader with the current value of its local sequence number seqNumi and its
sets of pending and ordered transactions (line 53). However, in lieu of directly
sending its set of pending transactions, process pi sends to the leader only the
highest value maxPending of sequence number present in its set of pending
transactions, associated with a proof indexProof [maxPending ] that pi has secure-
broadcast a value for each index up to maxPending . Intuitively, the proof ensures
that at least one correct process has delivered a value for each index up to
maxPending , and the SB-Agreement property ensures that every correct process
will eventually secure-deliver the same values. A formal proof is deferred to
Section 6.
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Algorithm 3 Delivery step at process pi
58: State
59: Logi ← [] ▷ log of committed transactions

60: upon deciding proposal [e] for epoch e do
61: M ← argmax

V⊆proposal[e],|V |=2f+1

∑
(j,L,σ,seqNumj)∈V

(seqNumj) ▷ 2f + 1 highest

62: lockedIndex ← min
s∈M

(s) ▷ compute locked index

63: O ← [] ▷ ordered sets decided
64: P ← [] ▷ pending sets decided
65: for (j, L, σ, seqNumj) ∈ proposal [e] do
66: wait (L.maxPending , ∗) secure-delivered from pj do
67: O ← O ∪ L.ordered ▷ combine ordered sets
68: for (t, s, σ) ∈ {delivered [j][s] : s ≤ L.maxPending} do
69: if (t, s, σ) /∈ Logi then
70: P [t]← P [t] ∪ s ▷ combine pending sets grouped by transaction

71: P ← P \ {P [t] ∈ P : |P [t]| < f + 1} ▷ txs that appear in at least f + 1 sets
72: D ← O ∪ P ▷ all decided transactions
73: C ← {(t,Median({s}) : (t, {s}) ∈ D ∧Median({s}) ≤ lockedIndex}
74: ordered ← ordered \ C ▷ update ordered set
75: pending ← pending \ C ▷ update pending set
76: Logi.append(C) ▷ commit set C

77: Update(D) ▷ required for liveness (see Section 5)

When the leader has collected the submissions from at least n− f processes
and the timer has expired, it combines them into its proposal for epoch e, and
initiates an instance of the Byzantine agreement to decide the tentative set of
transactions to be output during epoch e. The actual set of committed transac-
tions is decided during the delivery step.

Remark: throughout this paper, we treat the consensus protocol as a black
box, implying that any partially synchronous consensus protocol can be inte-
grated into our framework. Although we utilized a leader-based partially syn-
chronous consensus protocol in Algorithm 2, it is worth noting that any leaderless
partially synchronous consensus protocol also fits within our framework, with all
correct processes considered as leaders.

4.4 Delivery Step

The delivery step is presented in Algorithm 3. Once the result of the consensus
for epoch e is known, processes locally compute a set of transactions that can
be committed without violating fair separability. To this end, each process pi
must (1) remove from the tentative set unsafe transactions for which there may
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be transactions that could be assigned lower sequence numbers, and (2) add
transactions that must be ordered before according to fair separability but have
not been ordered.

Removing unsafe transactions. The median value associated with a trans-
action could have been assigned by any correct process. To ensure that no trans-
action can be issued a median value that is less than the sequence number of the
transactions in the tentative set, processes use the values of the local sequence
numbers seqNum included in the decided proposal for e. Specifically, they com-
pute the lockedIndex that corresponds to the lowest value of seqNum in the
decided proposal (line 62). Only transactions whose final sequence numbers are
less than lockedIndex can be committed in the current epoch (line 73). Note that
Byzantine processes could try to prevent transactions from being committed by
sending superficially low values of seqNum. To thwart this behavior, first, the
leader waits for the expiration of the timer when collecting submissions for its
proposal. This ensures that during synchronous periods, the leader receives sub-
missions from all correct processes. Then, the value of lockedIndex is computed
using only the highest 2f + 1 values of seqNum in the proposal (line 61).

Adding non-ordered transactions. To ensure that the set of committed
transactions does not exclude any transaction that should be ordered before the
transactions in the tentative set, each process pi looks at the pending transac-
tions in the histories of sequence numbers assigned by processes. Specifically, pi
adds to the tentative set any transaction that is not in the ordered sets but that
is present in the pending sets of at least f + 1 processes (line 71).

Finally, after removing unsafe transactions and adding non-ordered transac-
tions, processes can commit the resulting set C of transactions (line 76).

5 Fixing Liveness

In this section, we address liveness issues with Algorithm 3.

5.1 Issue with Previous Protocol

Our previous implementation ensures fair separability (Theorem 2), but it does
not ensure liveness. Consider the following scenario with P = {p1, p2, p3, p4},
and where p1 is Byzantine.

– Correct processes p2, p3, p4 have local sequence number 2, 4, 8, respectively,
and seqNum1 = 9.

– A transaction t is ordered with the set of sequence numbers S = [4, 8, 9] and
output in an epoch e with a sequence number s = Median(S) = 8.

– After receiving t, the local sequence numbers seqNum of processes (p2, p3, p4)
are (2 + 1, 4 + 1, 8 + 1) = (3, 5, 9), respectively. If Byzantine process p1
does not send any response to the leader requests for collection, and no
other transaction is submitted, then the computed value of lockedIndex is
min([3, 5, 9]) = 3 < 8.
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Algorithm 4 Update of seqNumi at process pi

78: function Update(D)
79: smax ← max

(t,s)∈D
(s) ▷ highest decided Median

80: lastSeq ← seqNumi

81: seqNumi ← max(seqNumi, smax ) ▷ update seqNumi

82: if seqNumi − lastSeq > 0 then
83: for k ∈ [lastSeq , seqNumi) do ▷ fill the gap
84: SecureBroadcast(k,⊥)

If no other transaction is submitted, and that Byzantine process p1 remains
silent, then t cannot be committed. To ensure liveness, we modify the previous
protocol. Intuitively, processes increase the values of their local sequence numbers
so that the transactions decided during consensus, such as t, can be committed
in the next epoch.

5.2 Fixing Liveness

To ensure liveness (cf. Definition 3), we must guarantee that a transaction broad-
cast by a correct process is eventually committed. To this end, upon deciding
a set of transactions for an epoch e, processes increase the value of their local
sequence numbers to the highest sequence number in the set of decided transac-
tions. We implement this increase of sequence numbers by adding in Algorithm 3
a call to the Update function (line 77). The Update function is detailed in Algo-
rithm 4. First, recall that in Algorithm 3, two sets of transactions are computed:

– a tentative set D (line 72) consisting of all the decided transactions that
could be committed,

– a committed set C (line 73) consisting of the transactions that can be com-
mitted without violating fair separability.

In Algorithm 4, a process pi computes the highest sequence number smax in
the set D, and uses smax to update its local sequence number seqNumi. This
ensures that when the network becomes synchronous (i.e., after GST), then all
the transactions decided in an epoch e can be committed in epoch e + 1. The
proof of liveness is presented in Theorem 1.

6 Protocol Analysis

In this section, we prove that our protocol implements an SMR protocol with
fair separability and discuss its chain quality.

6.1 State Machine Replication

Lemma 1 (History Liveness). If a correct process pi secure-broadcasts a
value v for its index k, then pi eventually receives enough acknowledgment shares
to build a valid proof Π for its index k.
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Proof. The SB-Validity property of Secure Broadcast (cf. Definition 1) ensures
that every correct process eventually secure-delivers v. Because pi is correct, it
also has previously secure-broadcast a value vk′ for each index k′ < k. Hence,
every correct process eventually secure-delivers a value for each index k′ ≤ k,
and sends to pi an acknowledgment share for index k (line 31). As a result, pi
receives at least n − f ≥ f + 1 shares and can combine them to build a valid
proof for its index k (line 36).

Lemma 2 (History Consistency). If a correct process receives a valid index
proof Π for the index k of pj, then every correct process eventually secure-delivers
some value vk′ for each index k′ ≤ k of pj, (i.e., delivered [j][k′] ̸=⊥), and for
each index k′ of pj, every correct process secure-delivers the same value vk′ .

Proof. In order to build a proof Π for the index k of a process pj , a process
must combine f + 1 acknowledgment shares for the index k. Consequently, at
least one correct process pi has created a share π for the index k of pj . Process
pi only generates π if it has secure-delivered from pj a value vk′ for every index
k′ ≤ k. As a result from the SB-Agreement property of Secure Broadcast (cf.
Definition 1), every correct process also delivers an identical value vk′ for every
index k′ ≤ k.

Lemma 3 (Delivery Agreement). During the delivery step (cf. Algorithm 3),
each correct process commits the same set of transactions.

Proof. The BA-Agreement property of consensus (cf. Definition 2) ensures that
each correct process decides the same proposal for each epoch. A proposal is
comprised of submissions from at least 2f + 1 processes. A submission from
a process pi contains a set of ordered transactions, a value of maxPending , a
valid proof Π for the index maxPending of pi, and the latest value of seqNumi.
Based on Lemma 2, a valid proof Π for pi guarantees that all correct processes
eventually deliver a consistent view of the history of pi, and that therefore the
wait at line 66 terminates for each submission in the proposal. It results that
all correct processes use a deterministic algorithm based on the same data, and
therefore commit the same set of transactions.

Theorem 1 (SMR). Our protocol, consisting of Algorithm 1, Algorithm 2,
Algorithm 3, and Algorithm 4, implements an SMR protocol (cf. Definition 3).

Proof. We prove each property separately.
Safety. Each correct process pi commits transactions in successive epochs,

and for each epoch e, pi waits until the consensus for epoch e−1 has terminated
before taking part in epoch e. Consequently, correct processes commit epochs in
the same order, starting with epoch 1, and from Lemma 3 we know that each
correct process commits the same set of transactions during each epoch.

Liveness. If a correct process broadcasts a transaction t, then each correct
process pi eventually receives t and secure-broadcasts the sequence number that
it assigns to t. As a result, every correct process eventually secure-delivers at least
n − f ≥ 2f + 1 correctly signed sequence numbers for t, and adds t to its local
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ordered set. Each decided epoch contains submissions from at least n − f pro-
cesses, and therefore submissions from at least f+1 correct processes. Therefore,
from then on, the set O (lines 63 and 67) will contain t, and thus t is included
in the set D of decided transactions (line 72) of each subsequent epoch. Let S
denote the set of sequence numbers associated with t in the decided proposal
D. If t is present more than once with different sets, processes deterministically
select the set with the lowest median value. Let s = Median(S).

It remains to show that the lockedIndex value computed by each correct pro-
cess (line 62) is eventually greater than s, and that therefore the condition on
line 73 is satisfied so that t can be committed. First, note that Algorithm 4 en-
sures that when a set D is decided, all correct processes increase their sequence
numbers to a value greater than or equal to s (line 81). Then, after GST, a cor-
rect leader is eventually elected in an epoch e, and waits for 2∆ when collecting
submissions. Therefore, the leader of epoch e includes in its proposal the sub-
missions from all correct processes. Finally, note that in epoch e, the lockedIndex
value is the lowest value among the 2f +1 highest values of seqNum included in
the decided proposal (lines 61 and 62). It follows that even if f Byzantine pro-
cesses were to send superficially low values of seqNum, the value of lockedIndex
will still be lower bounded by the sequence number of a correct process that
has previously set its local sequence number seqNum to a value greater than or
equal to s, and t is thus committed in epoch e.

6.2 Fair Separability

Lemma 4. Let SI = {seqNumi(t) : i ∈ I} denote the set of sequence numbers
assigned to t by a set I ⊆ P of distinct processes.

|I| ≥ 2f + 1⇒ seqMin(t) ≤ Median(SI) ≤ seqMax(t)

Proof. If |I| ≥ 2f+1, then there are in SI at least f values both before and after
Median(SI). As a result, Median(SI) is both lower bounded and upper bounded
by the sequence numbers assigned to t by correct processes.

Lemma 5. Let t1 and t2 denote two transactions. Let S2 denote a set of 2f +1
sequence numbers assigned to t2 by any set of distinct processes. Let S1 denote
a set of f + 1 sequence numbers assigned to t1 by any set of correct processes.

seqMax(t1) < seqMin(t2)⇒ Median(S1) < Median(S2)

Proof. From Lemma 4, we have for t2,

seqMin(t2) ≤ Median(S2) ≤ seqMax(t2).

By assumption, S1 only contains the sequence numbers assigned to t1 by correct
processes, therefore we have

∀s ∈ S1, s ≤ seqMax(t1)⇒ Median(S1) ≤ seqMax(t1).

It directly follows that

Median(S1) ≤ seqMax(t1) < seqMin(t2) ≤ Median(s1).
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Theorem 2 (Fair Separability). An SMR protocol using Algorithm 1, Algo-
rithm 2, and Algorithm 3 to commit transactions in successive epochs ensures
fair separability:

∀ t1, t2 ∈ T , seqMax(t1) < seqMin(t2)⇒ t1 ≺ t2.

Proof. Let t1 and t2 denote two transactions output in epochs e1 and e2, respec-
tively, and such that seqMax(t1) < seqMin(t2). First, if e1 < e2, then t1 ≺ t2
holds trivially. Otherwise, we must show that if t2 is output during an epoch
e2 ≤ e1, then we have e2 = e1 and t1 is also output in e2 with a sequence
number lower than t2.

Assume that t2 is output during an epoch e2 with a sequence number s2.
In e2, only transactions that have a sequence number that is less than or equal
to lockedIndex are output (line 73), and therefore we have s2 ≤ lockedIndex .
Furthermore, the BA-External-Validity property of the consensus protocol (cf.
Definition 2) guarantees that the leader proposal proposal [e2] for epoch e2 is
based on the submissions of at least 2f+1 ≤ n−f distinct processes. Therefore,
because lockedIndex is the lowest value of seqNumi among the collected responses
(line 62), lockedIndex is less than or equal to the local sequence numbers seqNumi

of a set P1 of at least f + 1 correct processes.
Due to Lemma 1, each correct process can eventually build a proof for each

index that it secure-broadcasts. Thus, each correct process pi ∈ P1 includes
in its submission for proposal [e2] the value maxPending of its highest pending
transaction and a valid proof of the index maxPending of pi. Lemma 2 ensures
that during the delivery steps, correct processes can receive all the pending
transactions for each submission in proposal [e2]. Recall that the local sequence
number seqNumi of each correct process pi ∈ P1 is greater than or equal to
lockedIndex . Furthermore, by assumption we have seqMax(t1) < s2, and thus
seqMax(t1) < s2 ≤ lockedIndex . Hence, every correct process in P1 must have
already assigned a sequence number to t1, and thus includes t1 in its set of
pending transactions. And because |P1| ≥ f + 1, the condition on line 71 does
not exclude t1, and t1 is also output in e2. Finally, using Lemma 5, we can
conclude that t1 is output with a sequence number s1 < s2.

6.3 Discussion

In SMRFS [8], a Byzantine process can submit a transaction at a cost of O(1)
network resources by sending it to a single correct process that will rebroadcast
it to all processes. Simultaneously, for a correct process to submit a transaction,
it broadcasts the transaction to all processes, incurring a cost of O(n). Failure
to do so would result in SMRFS losing liveness, as the submission by the cor-
rect process cannot be committed. This enables a greedy Byzantine process to
submit a distinct transaction ti to each process in lieu of broadcasting a unique
transaction t. As a result, if each Byzantine process sends a distinct transaction
to each correct process, f Byzantine processes can submit O(n2) transactions us-
ing O(n2) network resources. On the other hand, using O(n2) network resources,
correct processes only submit O(n) transactions by broadcasting them.
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In our protocol, a transaction t can only be output if at least f+1 (i.e., O(n))
processes have assigned a sequence number to t. As a result, whether a Byzantine
process sends its transaction t to f+1 correct processes or f Byzantine processes
broadcast a sequence number for t, Byzantine processes still need O(n) network
resources to submit a transaction. Finally, the external validity condition ensures
that the output of each epoch contains the submissions of at least n−f processes
and thus submissions from at least f +1 correct processes. This ensures that the
output of an epoch includes the submission of at least one correct process that
in turn has collected transactions from all processes.

Although typical SMR approaches focus only on improving throughput [9,
14, 17, 23], application of the SMR paradigm to decentralized applications has
brought a wide range of applications where it is more important to prioritize
the inclusion of inputs from all processes over a high throughput. These applica-
tions include collaborative decision-making, consortium blockchains, distributed
voting systems, and financial reconciliation systems. In these scenarios, ensur-
ing that inputs from all processes are included is fundamental for maintaining
fairness, accuracy, comprehensive data representation, and trust among partic-
ipants. By combining a balanced cost for transaction submission and a merged
output, we ensure an inclusive output for each epoch.

In terms of performance, the overhead of our protocol is limited. Our pro-
tocol has a fast path of 9 rounds, which is equivalent to or less than other
order-fairness solutions [2, 8, 12, 26]. Our protocol also incurs an O(n3) commu-
nication complexity, which is identical to previous order-fairness solutions [2,26],
and a linear multiplicative factor increase with respect to Themis [12] and SM-
RFS [8]. The main computational overhead in our protocol resides in the use of
threshold encryption for the sequence numbers broadcast by processes. We defer
a comprehensive experimental evaluation of the protocol and a comparison to
other solutions for future work.

7 Conclusion

In this paper, we first devised an SMR protocol that achieves fair separability
and ensures safety. Then, we modified our SMR protocol to ensure its liveness.
Finally, we presented a security analysis of our protocol. Our protocol not only
achieves fair separability but does so without the need to output every trans-
action observed by a correct process. Additionally, our protocol ensures that
malicious processes cannot inject any transactions into the output of SMR un-
less they have broadcast their transactions to at least a majority of the correct
processes. Compared to existing SMRFS solutions, our protocol has the same
cost per transaction for both correct and Byzantine processes and decides its
output using a quorum of processes. As a result, it provides resilience to chain-
quality attacks.
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