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Abstract—This paper introduces a new leaderless Byzan-
tine consensus called the Democratic Byzantine Fault Tolerance
(DBFT) for blockchains. While most blockchain consensus pro-
tocols rely on a correct leader or coordinator to terminate, our
algorithm can terminate even when its coordinator is faulty.

The key idea is to allow processes to complete asynchronous
rounds as soon as they receive a threshold of messages, instead
of having to wait for a message from a coordinator that may
be slow. The resulting decentralization is particularly appealing
for blockchains for two reasons: (i) each node plays a similar
role in the execution of the consensus, hence making the decision
inherently “democratic”; (ii) decentralization avoids bottlenecks
by balancing the load, making the solution scalable.

DBFT is deterministic, assumes partial synchrony, is resilience
optimal, time optimal and does not need signatures. We first
present a simple safe binary Byzantine consensus algorithm,
modify it to ensure termination, and finally present an optimized
reduction from multivalue consensus to binary consensus whose
fast path terminates in 4 message delays.

Index Terms—Byzantine consensus, weak coordinator, geo-
distribution

I. INTRODUCTION AND RELATED WORK

To circumvent the impossibility of solving consensus in
asynchronous message-passing systems [22] where processes
can be faulty or Byzantine [30], researchers typically use ran-
domization [3], [6], [14] or additional synchrony assumptions.
Randomized algorithms can use per-process “local” coins or
a shared “common” coin to solve consensus probabilistically
among n processes despite t < n

3 Byzantine processes. When
based on local coins, the existing algorithms converge in
O(n2.5) expected time [26]. A recent randomized algorithm
without signature [34] solves consensus in O(1) expected time
under a fair scheduler. The fair scheduler assumption was later
relaxed in an extended version [35] that we refer to as Coin
in the remainder of the paper. Unfortunately, implementing
a common coin increases the message complexity of the
consensus algorithm.

To avoid the need of a common coin and solve the consensus
problem deterministically, researchers have assumed partial
or eventual synchrony [21]. Interestingly, these solutions typ-
ically require a unique coordinator, or leader, to be non-
faulty [4], [8], [15], [20], [21], [27], [31], [32]. The advantage
is that if the coordinator is non-faulty and if the messages
are delivered in a timely manner in an asynchronous round,

then the coordinator broadcasts its proposal to all processes
and this value is decided after a constant number of message
delays. The well-known drawback of this approach is that
a faulty coordinator can dramatically impact the algorithm
performance [1], [5], [17] by leveraging the power it has in a
round and imposing its value to all.

In this paper, we present Democratic Byzantine Fault Toler-
ance (DBFT), a Byzantine consensus algorithm that copes with
this problem by not relying on a classic coordinator or leader.
Instead, DBFT uses what we refer to as a weak coordinator
that does not impose its value. On the one hand, this allows
non-faulty processes to decide a value quickly without the help
of the coordinator. On the other hand, the coordinator helps the
algorithm terminating if non-faulty processes know that they
proposed values that might all be decided. Furthermore, having
a weak coordinator allows rounds to be executed optimistically
without waiting for a specific message. Finally, DBFT is time
optimal, resilience optimal and does not need signatures.

To mitigate the limitations of leader-based Byzantine
consensus, other approaches were previously explored.
Some protocols progressively reduce the time allocated to a
coordinator to solve consecutive consensus instances in order
to force the change of a slow coordinator [5], [17]. While
this still requires a classic coordinator in each round, it favors
the fastest coordinator in successive rounds. An exponential
information gathering tree was used to terminate in t + 3
rounds without a coordinator [9]. Other solutions [21],
[43] require at least O(t) rounds. By contrast our weak
coordinator only helps agreement by suggesting a value
while still allowing a fast path termination in a constant
number of message delays, hence differing from the classic
coordinator [16], [21] or the eventual leader approaches that
cannot be implemented in BAMPn,t[t < n/3].

Application to blockchains. To motivate our algorithm, we
study its applicability to the recent context of blockchains [37].
Blockchains originally aimed at tracking ownerships of digital
assets where any Internet user could solve a cryptopuzzle
before proposing, for consensus, a block of asset transactions.
New blockchain models became promising at reducing the
amount of resources consumed by avoiding to resolve the
cryptopuzzle but restricting the set of proposers to a subset



of known processes. The consortium blockchains1 rely on a
preselected set of n known block proposers. The community
blockchains [44] introduces dynamism by allowing different
set of ni participants to propose blocks for different index i
of the chain. This is why, various blockchains started exploring
the use of Byzantine fault tolerant consensus, like the ordering
service of Hyperledger Fabric [2] that relies on BFTSmart [8]
or Tendermint [11] that relies on a variant of PBFT [15].
Unfortunately, these approaches are leader-based and cannot
scale beyond few nodes [8], [11]. Honeybadger [33] uses a
randomized algorithm [34] which requires a fair scheduler.
As far as we know, only the Red Belly Blockchain [24] uses
a similar deterministic leaderless solution.

These blockchains seem similar to replicated state ma-
chines [29], [42] where a sequence of commands must be
decided by multiple processes. A slight difference with state
machine replication is that the block at index x of a blockchain
must embed the hash of the block decided at instance number
(x − 1). This relation between instances is interesting as it
entails a natural mechanism during a consensus instance for
discarding fake proposals or, instead, extracting a valid value
out of various proposals.

We thus propose a variant of the consensus problem that
allows us to extend common definitions of Byzantine con-
sensus, that either assume that no value proposed only by
Byzantine processes can be decided [18], [35], [36], or that
any value (i.e., possibly proposed by a Byzantine process)
can be decided [21], [25], [32], [38], [41]. Interestingly, our
definition is less strict than interactive consistency [40] or
vector consensus [39]: for example, it does not require the
decided value to combine at least t + 1 values proposed by
correct processes.

Finally, we combine our consensus algorithm with an
optimized variant of the reduction of multivalue to binary
consensus of Ben-Or et al. [7] to propose a novel Democratic
Byzantine Fault Tolerant (DBFT) consensus algorithm
applicable to blockchains that terminates in 4 messages
delays in the good case, when all non-faulty processes
propose the same value.

Roadmap. Section II presents the model. Section III presents
the binary Byzantine consensus algorithm. Section IV presents
the consensus definition and an application to the blockchain
context and Section V concludes the paper. The proofs of
safety and termination as well as experimental results are
deferred to the companion technical report [19].

II. A BYZANTINE COMPUTATION MODEL

A. Asynchronous processes

The system consists of a set Π of n asynchronous sequential
processes, namely Π = {p1, . . . , pn}; i is called the “index”
of pi. “Asynchronous” means that each process proceeds at its
own speed, which can vary with time and remains unknown
to the other processes. “Sequential” means that a process

1https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/.

executes one step at a time. This does not prevent it from
executing several threads with an appropriate multiplexing.
Both notations i ∈ Y and pi ∈ Y are used to say that pi
belongs to the set Y .

B. Communication network

The processes communicate by exchanging messages
through an asynchronous reliable point-to-point network.
“Asynchronous” means that there is no bound on message
transfer delays, but these delays are finite. “Reliable” means
that the network does not lose, duplicate, modify, or create
messages. “Point-to-point” means that any pair of processes is
connected by a bidirectional channel. Hence, when a process
receives a message, it can identify its sender. A process pi
sends a message to a process pj by invoking the primitive
“send TAG(m) to pj”, where TAG is the type of the message
and m its content. To simplify the presentation, it is assumed
that a process can send messages to itself. A process pi
receives a message by executing the primitive “receive()”. The
macro-operation broadcast TAG(m) is used as a shortcut for
“for each pi ∈ Π do send TAG(m) to pj end for”.

C. Failure model

Up to t processes can exhibit a Byzantine behavior [40].
A Byzantine process is a process that behaves arbitrarily: it
can crash, fail to send or receive messages, send arbitrary
messages, start in an arbitrary state, perform arbitrary state
transitions, etc. Moreover, Byzantine processes can collude to
“pollute” the computation (e.g., by sending messages with the
same content, while they should send messages with distinct
content if they were non-faulty). A process that exhibits a
Byzantine behavior is called faulty. Otherwise, it is non-faulty.
Let us notice that, as each pair of processes is connected
by a channel, no Byzantine process can impersonate another
process. Byzantine processes can control the network by
modifying the order in which messages are received, but they
cannot postpone forever message receptions.

D. Additional synchrony assumption

It it well-known that there is no consensus algorithm ensur-
ing both safety and liveness properties in fully asynchronous
message-passing systems in which even a single process
may crash [22]. As the crash failure model is less severe
than the Byzantine failure model, the consensus impossibility
remains true if processes may commit Byzantine failures. To
circumvent such an impossibility, and ensure the consensus
termination property, we enrich the model with additional
synchrony assumptions. It is assumed that after some finite
time τ , there is an upper bound δ on message transfer
and process computation delays. This eventual (or partial)
synchrony assumption is denoted 3Synch .

E. Notations

The acronym BAMPn,t[∅] is used to denote the previous
basic Byzantine Asynchronous Message-Passing computation
model; ∅ means that there is no additional assumption. The



basic computation model strengthened with the additional
constraint t < n/3 is denoted BAMPn,t[t < n/3]. The latter
computation model strengthened with the eventual synchrony
constraint 3Synch is denoted BAMPn,t[t < n/3,3Synch].

III. BINARY BYZANTINE CONSENSUS

In this section, we propose a solution to the binary consen-
sus using a weak coordinator that requires neither signatures,
nor randomization. For the sake of simplicity, we build the
algorithm incrementally by first recalling the binary consensus
problem, then presenting a safe binary consensus algorithm
in the BAMPn,t[t < n/3] model and finally presenting
a safe and live consensus algorithm in the BAMPn,t[t <
n/3,3Synch] model.

Let V be the set of values that can be proposed by a process
to the consensus. While V can contain any number (≥ 2) of
values in multivalued consensus, it contains only two values
in binary consensus, e.g., V = {0, 1}. Assuming that each
non-faulty process proposes a value, the binary Byzantine
consensus (BBC) problem is for each of them to decide on a
value in such a way that the following properties are satisfied:

• BBC-Termination. Every non-faulty process eventually
decides on a value.

• BBC-Agreement. No two non-faulty processes decide on
different values.

• BBC-Validity. If all non-faulty processes propose the
same value, no other value can be decided.

A. The Binary Value Broadcast Communication Abstraction

Our binary consensus algorithm relies on a binary value
all-to-all communication abstraction, denoted BV-broadcast,
originally introduced for randomized consensus [35], and
restated in the companion technical report [19].

In a BV-broadcast instance, each non-faulty process pi
broadcasts a binary value and obtains (BV-delivers) a set
of binary values, stored in a local read-only set variable
denoted bin valuesi. This set, initialized to ∅, increases when
new values are received. BV-broadcast is defined by the four
following properties:

• BV-Obligation. If at least (t + 1) non-faulty processes
BV-broadcast the same value v, v is eventually added to
the set bin valuesi of each non-faulty process pi.

• BV-Justification. If pi is non-faulty and v ∈ bin valuesi,
v has been BV-broadcast by a non-faulty process.

• BV-Uniformity. If a value v is added to the set
bin valuesi of a non-faulty process pi, eventually v ∈
bin valuesj at every non-faulty process pj .

• BV-Termination. Eventually the set bin valuesi of each
non-faulty process pi is not empty.

The following property is an immediate consequence of the
previous properties. Eventually the sets bin valuesi of the
non-faulty processes pi (i) become non-empty, (ii) become
equal, (iii) contain all the values broadcast by non-faulty
processes, and (iv) never contain a value broadcast only by
Byzantine processes. However, no non-faulty process knows
when (ii) and (iii) occur.

B. Local variables and message types

Each process pi manages the following local variables.
• esti: local current estimate of the decided value. It is

initialized to the value proposed by pi.
• ri: local asynchronous round number, initialized to 0.
• bin valuesi[1..]: array of binary values; bin valuesi[r]

(initialized to ∅) stores the local output set filled by BV-
broadcast associated with round r. (This unbounded array
can be replaced by a single local variable bin valuesi,
reset to ∅ at the beginning of every round. We consider
here an array to simplify the presentation.)

• bi: auxiliary binary value.
• valuesi: auxiliary set of values.
The algorithm uses two message types, denoted EST and

AUX. Both are used in each round, hence they always appear
with a round number.

• EST[r]() is used at round r by pi to BV-broadcast its
current decision estimate esti.

• AUX[r]() is used by pi to disseminate its current value of
bin valuesi[r] (with the help of the broadcast() macro-
operation).

C. A safe asynchronous binary Byzantine consensus algorithm

For the sake of simplicity, we first introduce a new lead-
erless algorithm ensuring BBC-Validity and BBC-Agreement
properties in the system model BAMPn,t[t < n/3] but not
BBC-termination. The algorithm is depicted in Figure 1 and
provides the process pi with the operation bin propose(vi)
to propose its initial value vi. Process pi proceeds in asyn-
chronous rounds and decides value v when invoking decide(v)
at line 10.

After it has deposited its binary proposal in esti (line 01),
each non-faulty process pi enters a sequence of asynchronous
rounds. During a round r, each non-faulty process pi proceeds
in three phases.

Phase 1: Binary value broadcast to filter out the values of
Byzantine processes. Process pi first progresses to the next
round, and binary value broadcasts (BV-broadcast) its current
estimate (line 04).

At each process pi, within the BV broadcast() algorithm,
after receiving the same value from t + 1 processes, process
pi then rebroadcasts this value. Each process pi BV-delivers
a value v by adding it to its bin valuesi set only if it
receives v from 2t+ 1 distinct processes. Eventually the sets
bin values of all non-faulty processes become non-empty,
equal, and contain exclusively all values broadcast by non-
faulty processes [19]. When a value is BV-delivered it is
then added to bin valuesi[r] (line 14). Then pi waits until
its set bin valuesi[r] is not empty (let us recall that, when
bin valuesi[r] becomes non-empty, it has not necessarily its
final value).

Phase 2: Exchanging estimates to converge to an agree-
ment. This second phase runs between line 06 and line 07). In



operation bin propose(vi) is
(01) esti ← vi; ri ← 0;
(02) while (true) do
(03) ri ← ri + 1;
(04) BV broadcast EST[ri](esti); // add to bin values[ri] upon BV delivery

(05) wait until
(
bin valuesi[ri] 6= ∅

)
;

(06) broadcast AUX[ri](bin valuesi[ri]);
(07) wait until

(
messages AUX[ri](b valp(1)), ..., AUX[ri](b valp(n−t)) have been received

from (n− t) different processes p(x), 1 ≤ x ≤ n− t, and their contents are
such that ∃ a non-empty set valuesi where (i) valuesi = ∪1≤x≤n−tb valp(x)
and (ii) valuesi ⊆ bin valuesi[ri]

)
;

(08) bi ← ri mod 2;
(09) if (valuesi = {v}) // valuesi is a singleton whose element is v

(10) then esti ← v; if (v = bi) then decide(v) if not yet done end if;
(11) else esti ← bi
(12) end if;
(13) end while.

(14) when B-VAL[r](v) is BV-delivered by BV broadcast[r] do
bin valuesi[r]← bin valuesi[r] ∪ {v};

Fig. 1. A safe algorithm for the binary Byzantine consensus in BAMPn,t[t < n/3]

this phase, pi broadcasts normally a message AUX[r]() whose
content is bin valuesi[r] (line 06). Then, pi waits until it has
received a set of values valuesi satisfying the two following
properties.
• The values in valuesi come from the messages AUX[r]() of

at least (n− t) different processes.
• valuesi ⊆ bin valuesi[r]. Thanks to the BV-broadcast that

filters out Byzantine value, even if Byzantine processes send
fake messages AUX[r]() containing values proposed only
by Byzantine processes, valuesi will contain only values
broadcast by non-faulty processes.

Hence, at any round r, after line 07, valuesi ⊆ {0, 1} and
contains only values BV-broadcast at line 04 by non-faulty
processes.

Phase 3: Deciding upon estimate convergence to round
number modulo 2. The third phase runs between line 08
and line 12. This phase is a purely local computation phase,
during which (if not yet done) pi tries to decide the value
b = r mod 2 (lines 08 and 10), depending on the content of
valuesi.
• If valuesi contains a single element v (line 09), then v

becomes pi’s new estimate. Moreover, v is a candidate for
the consensus decision. To ensure BBC-Agreement, v can
be decided only if v = b. The decision is realized by the
statement decide(v) (line 10).

• If valuesi = {0, 1}, then pi cannot decide. As both values
have been proposed by non-faulty processes, to entail con-
vergence to agreement, pi selects one of them (b, which is
the same at all non-faulty processes for the same round) as
its new estimate (line 11).

Let us observe that the invocation of decide(v) by pi does not
terminate the participation of pi in the algorithm, namely pi
continues looping forever. This is because a deciding process
may need to help other processes converging to the decision
in the two subsequent rounds. This algorithm can be modified
to avoid this infinite loop, but to preserve the simplicity in the
presentation, we postpone a deterministic terminating solution

to Section III-D. The proof of correctness of algorithm 1 is
deferred to the companion technical report [19].

D. Psync: Safe and Live Consensus in BAMPn,t[t <
n/3,3Synch]

We now present Psync, an algorithm solving the bi-
nary Byzantine consensus problem in the BAMPn,t[t <
n/3,3Synch] model. Similar to the safe algorithm (Sec-
tion III-C), Psync does not use signatures or randomization
and has the following additional characteristics:

• Psync is time optimal [23] in that it terminates in O(t)
message delays.

• When all non-faulty processes propose the same value,
Psync terminates in O(1) message delays, even under
asynchrony.

• Psync does not wait for a message from its coordinator
and does not need recovery.

The Psync algorithm is presented in Figure 2 as an
extension of the safe algorithm in Figure 1, with new and
modified lines prefixed with “New” and “M-”, respectively.
Lines prefixed by “Opt” are optional optimizations. In
addition to the use of local timers, to eventually benefit
from the 3Synch assumption, the algorithm uses a weak
coordinator: the weak coordinator of round r is the process pi
such that i = ((r− 1) mod n) + 1. Note that this new round
coordinator is only used to help agreement by suggesting
a value and thus differs from the classic coordinator [16], [21].

Additional local variables and message type. In addition to
esti, ri, bin valuesi[r], and valuesi, each process pi manages
the following local variables.

• timeri is a local timer, and timeouti a timeout value,
both used to exploit the assumption 3Synch .

• coordi is the index of the current weak round coordinator.
• auxi is an auxiliary set of values, used to store the

value (if any) that the current weak coordinator strives
to impose as decision value.



operation bin propose(vi) is
(01) esti ← vi; ri ← 0;

timeouti ← 0;
(02) while (true) do
(03) ri ← ri + 1;
(Opt1) if (esti = −1) then esti ← 1; // “fast-path” for round 1, only used in the reduction in Sect. IV
(04) else BV broadcast EST[ri](esti);

end if;
(New1) wait until

(
bin valuesi[ri] 6= ∅

)
;

timeouti ← timeouti + 1; set timeri to timeouti;
(New2) coordi ← ((ri − 1) mod n) + 1;

if (i = coordi) then
{w} = bin valuesi[ri]; // w is the first value to enter bin valuesi[ri]

broadcast COORD VALUE[ri](w)
end if;

(M-05) wait until
(
(bin valuesi[ri] 6= ∅) ∧ (timeri expired)

)
;

(New3) if
(
(COORD VALUE[ri](w) received from pcoordi

) ∧ (w ∈ bin valuesi[ri])
)

then auxi ← {w}
else auxi ← bin valuesi[ri]

end if;
(M-06) broadcast AUX[ri](auxi);
(New4) wait until

(
a message AUX[ri]() has been received from (n− t) different processes

)
;

set timeri to timeouti;
(M-07) wait until

(
(messages AUX[ri](b valp(1)), ..., AUX[ri](b valp(n−t)) have been received

from (n− t) different processes p(x), 1 ≤ x ≤ n− t, and their contents are
such that ∃ a non-empty set valuesi where (i) valuesi = ∪1≤x≤n−tb valp(x)
and (ii) valuesi ⊆ bin valuesi[ri]) ∧ (timeri expired)

)
;

(New5) if (when considering the whole set of the messages AUX[ri]() received, several sets
values1i, values2i, ... satisfy the previous wait predicate) ∧ (one of them is auxi)

then valuesi ← auxi end if; // valuesi is either defined here or at line M07
(08) bi ← ri mod 2;
(09) if (valuesi = {v}) // valuesi is a singleton whose element is v

(10) then esti ← v; if (v = bi) then decide(v) if not yet done end if;
(11) else esti ← bi
(12) end if;
(Opt2) if (decided in round ri) then // the following are termination conditions

wait until (bin valuesi[ri] = {0, 1}) // only go to the next round when necessary
else if (decided in round ri − 2) then halt end if; // everyone has decided by now
end if;

(13) end while.

Fig. 2. A safe and live algorithm for the binary Byzantine consensus in BAMPn,t[t < n/3,3Synch]; line (Opt1) is an optimization only applied in the
multivalued reduction presented in Section IV; line (Opt2) is a mechanism to prevent unnecessary rounds from being executed

The weak coordinator of round r, uses the message type
COORD VALUE[r]() to broadcast the value it suggests for
decision.

Description of the extended algorithm. We now list the new
and modified lines that were added in Figure 2.

• At line New1, pi waits until a value enters bin values ,
then sets its local timer, whose expiry is used in the
predicate of line M-05. The timeout value is initialized
before entering the loop, and then increased at every
round.

• Line Opt1 is an optimization only used along with the
reduction to multivalued consensus presented in Section
IV.

• Line New4 waits until (n− t) AUX[r]() messages are re-
ceived from different processes before reseting the timer,
whose expiry is used in the predicate of the modified
line M-07.

• Lines New2, New3, M-06, and New5 realize a mech-
anism that allows the current weak coordinator (whose
value is computed on line New2) to try to impose the
first value that enters into its bin values set as the

decided value. Combined with the fact that there is a
time after which the messages exchanged by the non-
faulty processes are timely, this ensures that there will be
a round during which the non-faulty processes will have
a single value in their sets valuesi, which entails their
decision.

• Modified lines M-05 and M-07: addition of the timer ex-
piration in the predicate considered at the corresponding
line.

• Line Opt2 is an optional optimization to minimize
the amount of extra rounds processes need to exe-
cute after deciding. The first condition (wait until
(bin valuesi[ri] = {0, 1})) ensures that, after decision,
a process only continues to the next round if some other
non-faulty process did not decide in the current round. As
this can only happen if both 0 and 1 enter bin values , the
process will not move on to the next round until this is
true. The second condition, (if (decided in round ri−2)),
halts the process 2 rounds after it has decided, as all non-
faulty processes are guaranteed to have decided by this
round.

The aforementioned modifications exploit the weak coordi-



nator that only helps resolving disagreement by broadcasting a
value that all non-faulty adopt, as opposed to leaders or classic
(strong) coordinators [16], [21]. To this end:

• The weak coordinator pk broadcasts the message CO-
ORD VALUE[ri](w), where w is the first value that enters
its bin values set (line New2). If pk is non-faulty, the
timeout values of the non-faulty processes are big enough,
and there is a bound on message transfer delays, so that
all non-faulty processes will receive it before their timer
expiration at line M-05.

• Then, assuming the previous item, all non-faulty pro-
cesses set auxi to {w} (line New3), and broadcast it
(line M-06). The predicate w ∈ bin valuesi[ri] is used
to prevent a Byzantine coordinator to send fake values
that would foil non-faulty processes.

• Finally, all the non-faulty processes will receive the
message AUX[ri]({w}) from (n− t) different processes,
and, by line New5, will set valuesi = {w}. This entails
their decision during the round (r + 1) or (r + 2).

To ensure that slow processes catch up to faster processes that
have reached later rounds, once a process has received at least
t+1 messages belonging to a round r, the process does wait for
timeouts in rounds less than r. In the presence of 3Synch ,
this ensures that all non-faulty processes eventually execute
synchronous rounds. The proof of liveness of Algorithm 2 is
deferred to the companion technical report [19].

IV. DBFT: FROM BINARY BYZANTINE CONSENSUS TO
BLOCKCHAIN CONSENSUS

This section presents a Democratic Binary Fault Tolerant
algorithm, called DBFT. It relies on a reduction from the
binary Byzantine consensus Psync to the multivalue consensus
and is also time optimal, resilience optimal and does not
use classic (strong) coordinator, which means that it does
not wait for a particular message. In addition, it finishes in
only 4 messages delays in the good case, when all non-faulty
processes propose the same value.

We consider a variant of the classical Byzantine consen-
sus problem, called the Validity Predicate-based Byzantine
Consensus (denoted VPBC). Its validity requirement relies
on an application-specific valid() predicate that is used by
blockchains to indicate whether a value is valid. Assuming
that each non-faulty process proposes a valid value, each of
them has to decide on a value in such a way that the following
properties are satisfied.

• VPBC-Termination. Every non-faulty process eventually
decides on a value.

• VPBC-Agreement. No two non-faulty processes decide
on different values.

• VPBC-Validity. A decided value is valid, i.e., it satisfies
the predefined predicate denoted valid(), and if all non-
faulty processes propose the same value v then they
decide v.

This definition generalizes the classical definition of
Byzantine consensus, which does not include the predicate

valid(). This predicate is introduced to take into account
the distinctive characteristics of blockchains, and possibly
other specific Byzantine consensus problems. In the context
of blockchains, a proposal is not valid if either it does not
contain an appropriate hash of the last block added to the
Blockchain or it contains invalid transactions. There exist
similar problem definitions whose validity also relies on the
notion of a predicate. The validated Byzantine consensus [12]
differs in that the same valid value proposed by non-faulty
processes has to be decided if “all” processes are non-faulty.
The asynchronous Byzantine agreement [28] defines a legal
value similar to our valid value, however, its validity does
not require a legal value to be decided if multiple ones exist,
while we require that any decided value must be valid. A
probabilistic variant [13] required that the decided value be
one of the proposed values, something we do not require.
Finally, vector consensus [39] and interactive consistency [30]
both require a minimal number of proposals to be decided.

operation mv propose(vi) is
(01) RB broadcast VAL(vi);
(02) repeat if

(
∃ k : (proposalsi[k] 6= ⊥)∧

(BIN CONS [k].bin propose() not invoked)
)

(03) then invoke BIN CONS [k].bin propose(−1) end if;
(04) until (∃` : bin decisionsi[`] = 1) end repeat;
(05) for each k s.t. BIN CONS [k].bin propose() not yet invoked
(06) do invoke BIN CONS [k].bin propose(0) end for;
(07) wait until (

∧
1≤x≤n bin decisionsi[x] 6= ⊥);

(08) j ← min{x such that bin decisionsi[x] = 1};
(09) wait until (proposalsi[j] 6= ⊥);
(10) decide(proposalsi[j]).

(11) when VAL(v) is RB-delivered from pj do
if valid(v) then

proposalsi[j]← v;
BV-deliver B-VAL[1](1) to BIN CONS [j] end if.

(12) when BIN CONS [k].bin propose() decides a value b
do bin decisionsi[k]← b.

Fig. 3. From multivalued to binary Byzantine consensus in BAMPn,t[t <
n/3,BBC]

Binary consensus objects. The processes cooperate with
an array of binary Byzantine consensus objects denoted
BIN CONS [1..n]. The instance BIN CONS [k] allows
the non-faulty processes to find an agreement on the value
proposed by pk. This object is implemented with the binary
Byzantine consensus algorithm presented in Section III-D.
To simplify the presentation, we consider that a process pi
launches its participation in BIN CONS [k] by invoking
BIN CONS [k].bin propose(v), where v ∈ {0, 1}. Then, it
executes the corresponding code in a specific thread, which
eventually returns the value decided by BIN CONS [k].

Local variables. Each process pi manages the following local
variables; ⊥ denotes a default value that cannot be proposed
by a (faulty or non-faulty) process.

• An array proposalsi[1..n] initialized to [⊥, · · · ,⊥]. The
aim of proposalsi[j] is to contain the value proposed by



pj .
• An array bin decisionsi[1..n] initialized to [⊥, · · · ,⊥].

The aim of bin decisionsi[k] is to contain the value
(0 or 1) decided by the binary consensus object
BIN CONS [k].

The algorithm. The algorithm reducing from the binary
Byzantine consensus to multivalue Byzantine consensus is
described in Figure 3 and is similar to an existing reduc-
tion [7], except that it combines the reliable broadcast, RB-
broadcast [10], restated in the companion technical report [19],
with our binary consensus messages to finish in 4 message
delays in the good case. Initially, a process invokes the
operation mv propose(v), where v is the value it proposes to
the multivalued consensus. Process pi executes four phases.

• Phase 1: pi disseminates its value (lines 01 and 11).
Process pi first sends its value to all the processes
by invoking the RB-broadcast operation (line 01). If a
process RB-delivers a valid value v RB-broadcast by a
process pj , then the process stores it in proposalsi[j]
and BV-delivers 1 directly to round one of instance
BIN CONS [j] (line 11), placing 1 in its bin valuesi
for that instance.

• Phase 2: Process pi starts participating in a first set of
binary consensus instances (lines 02-04). It enters a loop
in which it starts participating in the binary consensus
instances. Process pi invokes a binary consensus instance
k with value −1 for each value RB-broadcast by process
pk that pi RB-delivered. −1 is a special value that allows
the binary consensus to skip the BV broadcast step
(line (Opt1)) and immediately send an AUX message with
value 1, allowing the binary consensus to terminate with
value 1 in a single message delay. (Note that the timeout
of the first round is set to 0 so the binary consensus
proceeds as fast as possible.) The direct delivery of 1
into bin values is possible due to an overlap in the
properties of BV broadcast and RB-broadcast, allowing
us to skip a message step of our binary consensus
algorithm. In other words, all non-faulty processes will
RB-deliver the proposed value, and as a result will also
BV-deliver 1. This loop stops as soon as pi discovers a
binary consensus instance BIN CONS [`] in which 1 was
decided (line 04). (As all non-faulty processes will only
have 1 in their bin values until an instance terminates,
the first instance to decide 1 will terminate in one message
delay following the RB-delivery.)

• Phase 3: pi starts participating in all other binary
consensus instances (lines 05-06). After it knows
a binary consensus instance decided 1, pi invokes
with bin propose(0) all the binary consensus instances
BIN CONS [k] in which it has not yet participated.
Let us notice that it is possible that, for some of these
instances BIN CONS [k], no process has RB-delivered
a value from the associated process pk. The aim of
these consensus participation is to ensure that all binary
consensus instances eventually terminate.

• Phase 4: pi decides a value (lines 07-10 and 12). Process
pi considers the first (according to the process index
order) among the successful binary consensus objects,
i.e., the ones that returned 1 (line 08). Let BIN CONS [j]
be this binary consensus object. As the associated decided
value is 1, at least one non-faulty process proposed 1,
which means that it RB-delivered a value from the pro-
cess pj (lines 02-03). Observe that this value is eventually
RB-delivered by every non-faulty process. Consequently,
pi decides it (lines 09-10). Notice that as soon as the
binary consensus instance with the smallest process index
terminates with 1, the reduction can return as soon as
the associated value is RB-delivered. This is due to the
observation that the values associated with the larger
indices will not be used.

Complexity. This eager termination allows the consensus al-
gorithm to terminate in 4 message delays in the good scenario,
i.e., 3 message delays to execute the reliable broadcast and 1 to
complete the binary consensus by skipping the BV broadcast
step. In this case the reliable broadcast and binary consensus
each have O(n2) message complexity for a total of O(n3)
including all n instances. In the case of faulty processes
or asynchrony the algorithm will need at least 3 additional
message delays for binary consensus instances to terminate
with 0.

Theorem 1. The algorithm described in Figure 3 implements
the multivalued Byzantine consensus (VPBC) in the system
model BAMPn,t[t < n/3,BBC].

The proof of correctness of DBFT is deferred to the
companion technical report [19].

V. CONCLUSION

To conclude, our weak coordinator based Byzantine con-
sensus is time optimal, resilience optimal, does not rely on
randomization or signatures and improves over the randomized
Byzantine consensus algorithms [34], [35]. We presented how
it can be used for blockchains by generalizing the Byzantine
consensus problem and presenting a solution that combines
an optimized reduction with our binary Byzantine consensus
algorithm.

A variant of DBFT is now at the heart of the Red Belly
Blockchain, one of the fastest blockchains to date [24]. Future
work involves adapting DBFT to support rational processes
rather than simply either Byzantine or non-faulty processes.
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