ComChain: A Blockchain with Byzantine Fault Tolerant

Reconfiguration®
Guillaume Vizier Vincent Gramoli
Ecole Polytechnique, France University of Sydney, CSIRO Data61
Abstract

Selecting which blockchain participants can decide upon a new block is a difficult problem. Con-
sortium blockchains need the participants to be predetermined while public blockchains incentivize all
participants to waste their resources to decide every block.

In this paper, we introduce the community blockchain that allows potentially all participants to de-
cide upon “some” block while restricting the set of participants deciding upon “one” block. To this end,
we propose a blockchain reconfiguration, a Byzantine consensus protocol that allows to dynamically
change the set of blockchain participants deciding upon the upcoming blocks. The resulting blockchain,
called ComChain, is resilience optimal, and transitions through different configurations of participants
recorded in dedicated blocks, so that each configuration decides upon its subsequent transaction blocks.
We evaluate an implementation that adds reconfiguration to the Red Belly Blockchain and demonstrates
its practical performance in a distributed system.

Keywords. Community blockchain, reconfiguration, Byzantine consensus

1 Introduction

A blockchain is an abstraction representing a linked list of transaction blocks implemented in a distributed
system of nodes whose roles can be classified as follows: (i) clients that can read (audit) and write (transact)
the data and (ii) deciders that run a consensus algorithm to decide upon the new block of transactions at a
given index of the chain. There exist various types of blockchains that differ mostly in the way their nodes
have permissions to play specific roles, and in the consensus algorithm that deciders run to agree upon new
blocks.

In public blockchains [31, 36], all nodes are potentially deciders and can participate in the creation of
new blocks [40]. To cope with Sybil attacks, they typically rely on proof-of-work challenges that restrict
the power of a malicious user to its resources. Provided that the malicious user does not own a large portion
of the resources of the system, it cannot impose its decision to the others. As all nodes can be deciders
and rewards are in place to incentivise nodes to become deciders, these systems typically consume a large
amount of resources. For example, Bitcoin and Ethereum consume individually as much electricity as a
reasonably-sized country.!

In consortium and private blockchains, proof-of-work and other synchronous alternatives are rarely used
because they expose these blockchains to known network attacks [32, 17, 18]. Instead, the permission for

*The short version of this paper appeared in the proceedings of IEEE Blockchain 2018 [41]. The current version extends the
other with the proofs of correctness and termination, as well as new experiments.

IThe electricity consumed by Bitcoin and Ethereum are respectively estimated to 24 and 9 terawatts per hour according to
http://bitcoinenergyconsumption.com and http://ethereumenergyconsumption. com.

some nodes to act as deciders is hardcoded [5, 26, 38]. The drawback of hardcoding these permissions is
that the membership is static: each time a decider must be added or removed, then the whole blockchain
must be stopped and restarted [39, 42]. This lack of dynamism is a major issue in long-lived blockchain
where hardware components eventually fail and consortia naturally evolve.> As a result, such systems are
often considered too “centralized” due to the inalterable power they offer to their deciders.

In this paper we cope with these two issues, by offering a community blockchain model that bridges the
gap between public and consortium/private blockchains. In particular, a community blockchain (i) inher-
ently copes with Sybil attacks by identifying its dynamic set of deciders and (ii) allows any participants to
become a decider without wasting the resources of all participants.

To this end, the community blockchain relies on a new type of block: the configuration block. Its role is
to define among all participants a subset of deciders, or community, responsible for deciding the upcoming
transaction blocks. More precisely, each configuration block lists a configuration as a set of decider nodes
identified by their public key. These n decider nodes keep adding new transaction blocks. After some
time, these decider nodes propose new configurations, as any set of nodes, to each other, and, despite r < %
misbehaving or Byzantine nodes, n — ¢ correct must reach a consensus on one configuration. These deciders
have the responsibility of selecting a configuration that is acceptable according to application-specific rules
(e.g., new deciders must be sufficiently representative of the participants, they must be owned by k& different
companies and hosted in ¢ different jurisdictions, and must not have been held accountable for misbehaviors
in the past [8]).

We also propose a partially synchronous implementation of this community blockchain, called Com-
Chain. ComChain builds upon the Red Belly Blockchain [24, 13], the fastest blockchain we know of. In
ComChain, the genesis block stores the initial configuration as the set of deciders. Upon reception of trans-
actions, these deciders validate them and agree to append a new block of validated transactions. Once these
deciders reach an agreement on a new acceptable configuration, they sign the configuration and store this
signed configuration into a new configuration block. From this point on, the new configuration defines the
new set of deciders that will append the next transaction blocks until the next reconfiguration and so on.

The community blockchain model allows potentially all participants to decide upon “some” block while
restricting the set of participants deciding upon “one” block. As opposed to the consortium blockchain
model that has a predetermined set of deciders [40], the community blockchain model is dynamic. As
opposed to the public blockchain model that incentivizes all participants to be deciders of the same block,
our model limits the waste of resources. We prove that our algorithm terminates and does not impact the
resilience of the consensus.

We also deploy ComChain on 12 physical machines to evaluate the performance of the reconfiguration
and its impact on the blockchain service when executed concurrently to transaction invocations. These
experiments demonstrate empirically two things: (i) Performance decreases with the number of nodes to
add but increases with the number of nodes to remove. (ii) While the reconfiguration affects the throughput
of the blockchain, it disrupts the blockchain service.

To the best of our knowledge, no deterministic blockchain implementation support a dynamic mem-
bership. Traditional ideas consist of picking the block of the fastest node to solve a random cryptopuzzle
through proof-of-work [31, 36] or selecting a random set of nodes through sortition [20]. All these ideas
fundamentally rely on randomness to prevent any group of nodes from controlling the outcome of the se-
lection. For the sake of security, however, the set of deciders has to be frequently renewed so that many
uncontrollable random processes get executed in a long-lived system. Repeating these random selections
will eventually select nodes prone to attacks (e.g., belonging to partnering companies who can build a coali-
tion or too few jurisdictions so that judges can stop the service). This randomness is in contradiction with
the concept of community blockchain that trusts the current configuration to choose an acceptable new

2R3 had 11 participants in 2016 and includes now more than 70 participants.

configuration.

Section 2 presents an overview of the related work. Section 3 introduces our model. Section 4 presents
an overview of our solution at a high level. Section 5 specifies a detailed implementation, called Com-
Chain, and proves it correct. Section 6 illustrates how our reconfiguration mechanism performs empirically.
Section 7 discusses some of our assumptions. Section 8 concludes.

2 Related work

In this section, we present the related work, both in the areas of blockchain systems and of distributed
systems reconfiguration.

2.1 Reconfiguring distributed systems

Reconfiguration of distributed systems have been extensively studied in the past as it finds applications
in cluster membership changes [27], atomic storage [7, 21, 35], file systems [15], replicated state ma-
chines [30, 1] and rolling upgrades [23]. The most common types of reconfigurable services are atomic
storage that supports reads and writes [21, 22] and replicated state machine that supports generic com-
mands, like transactions [30, 1]. Blockchains resemble replicated state machines in that they also support
transactions, however, each new decided transaction block depends on the previous block as opposed to the
replicated state machine commands that are decided regardless of one another [10].

Paxos and Vertical Paxos [29] were proposed originally as crash-tolerant consensus algorithms that can
be used for reconfiguration. Byzantine fault tolerant variants of both algorithms exist. Like typical Byzantine
fault tolerant consensus algorithms [6], they rely on a leader to solve consensus in order to reconfigure and
prevent blockchains to scale. In other papers [35, 9, 2], the service providing the information about the
configuration of the system is distributed across several nodes, however, the configuration changes require
an authorised trusted party to be decided. Just like a permissionless blockchain model, the community model
has to scale to many nodes and cannot rely on any trusted entity or a single leader.

The Byzantine reconfiguration of a service is usually a non trivial algorithm as it must cohabit with
the service itself. Unfortunately, some solutions are individual components of a larger system that is not
described [15, 38]. Often, the way the new configuration is decided is described, but not the way to actually
change the set of nodes of the considered system, which can lead to unexpected problems.

2.2 Blockchains

Byzantine consensus algorithms recently gained in popularity in blockchain systems for their ability to cope
with malicious behaviors without resorting to an energy-greedy proof-of-work [10, 39, 24, 13]. Little work
on this topic has been formalized and most of the available documentation is presented informally [43].

Hybrid mechanisms were recently proposed to combine Byzantine fault tolerance (BFT) with proof-
of-work [34] in order to elect a committee of decider nodes that will then run consensus only to process
transactions. As the authors explain, however, this protocol is not guaranteed to be secure and may fork in
what they call their snailchain. ByzCoin [28] also relies on proof-of-work to select a committee but relies
on a leader to solve consensus. As it is impossible to elect a correct leader in a Byzantine environment, such
an approach may suffer performance degradation.

Similar trust assumptions as the ones we used in Section 4.5 were formalized in proof-of-stake blockchains [14].
Proof-of-stake protocols naturally imply reconfiguration as the voting power evolves with the amount of
money owned by a node, and thus with time.

Algorand [20] relies on a new BFT algorithm. Their algorithm uses reconfiguration in the sense that only
a fraction of all available users actively contribute to the consensus algorithm at each step. Their tolerance

model is stronger than ours as they resist an attacker that can corrupt nodes instantaneously but the number
of nodes an adversary can corrupt is bounded in the same way as ours: not more than a third of participating
nodes can be corrupted.

Unfortunately, all the aforementioned solutions cannot work in a partially synchronous environment: all
the messages they exchange have to be delivered in less than a predefined amount of time for the algorithms
to work.

To the best of our knowledge, no deterministic blockchain implementation working in a partially syn-
chronous environment supports a dynamic membership. Probabilistic alternatives revert typically to proof-
of-* [31, 36], randomized consensus [16] or sortition [20]. This randomness is in contradiction with the
concept of community blockchain that trusts the current configuration to choose an acceptable new config-
uration deterministically.

Deterministic reconfiguration was however suggested online in some Byzantine fault tolerant extensions
of existing blockchain projects [39, 42]. Hyperledger Fabric aims at supporting membership changes with-
out compromising the network (cf. https://hyperledger-fabric.readthedocs.io/en/latest/
glossary.html#dynamic-membership), however, as of May 30, 2019, it “requires that the peer or or-
derer process is restarted”?. In addition, as of May 30, 2019, Hyperledger Fabric is not Byzantine Fault
Tolerant, as it uses Kafka that can only tolerate crash faults. An orderer was made BFT using BFTS-
mart but accepts only timestamps, and not transactions. Tendermint mentions validator set changes [42],
however, as of May 30, 2019 as well, this requires an external application that handles those reconfigura-
tions (cf. Section 7.1, second paragraph of https://atrium.lib.uoguelph.ca/xmlui/bitstream/
handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf7sequence=7&isAllowed=y). In contrast,
our Byzantine fault tolerant reconfiguration is non-disruptive and the main feature of ComChain.

3 Model

The system is made up of a set 7 of k asynchronous sequential processes, namely I1 = {py,...,pr}; i is
called the “index” of p;. “Asynchronous” means that each process proceeds at its own speed, which can
vary with time and remains unknown to the other processes. “Sequential” means that a process executes one
step at a time. Fisher and al. have proven [19] that the consensus problem cannot be solved when nodes
can possibly fail. Thus, we need to make additional assumptions on the network. Several major running
blockchains [31, 36, 33] assume synchrony in the network: in other words, they assume that every message
arrives after at most a predefined time period. Even recent papers [20] make the same assumption. But, this
assumption, no matter how the predefined time period is, does not seem realistic: how can anyone ensure
that a split in the connection between two actors of the systems will always last for less than that duration?
Hence, we make a weaker assumption: all messages eventually arrive. In other words, we do not know a
priori for how long we will wait, but every message will someday arrive at its destination. This assumption
is the partial synchrony.

The classic failure model considers that a node is either correct in that it follows its specification or
Byzantine, in which case it behaves arbitrarily. But the status of a node never changes, which is unlikely
if the blockchain is supposed to run during a long time. Thus, we define a dynamic failure model. A node
is said to be correct during a time frame At if it follows its specification during that time interval. The
aforementioned time period Af is not defined with a fixed duration. A node is said to be Byzantine during a
time frame At if it stops following its specification at any time during that time interval. A node is said to be
correct (respectively Byzantine) within the i consensus instance if it is correct (respectively Byzantine) for
the time frame between its proposal and its decision for this consensus instance.

3h‘ctps ://hyperledger-fabric.readthedocs.io/en/latest/msp.html#msp-setup-on-the-peer-orderer-side,
accessed on May 30. 2019.

A consensus instance is one execution of a consensus algorithm. Consensus instances occur sequentially.
It is launched by nodes proposing a value. n —t nodes need to propose a value in order to launch a consensus
instance. The nodes taking part in the consensus propose regularly, and thus launch consensus instances.

Definition 1. A configuration is a set Il of n nodes, fulfilling the following requirements :
e Network: we have an asynchronous point-to-point reliable network for our n nodes*>,
e Awareness: all correct nodes have knowledge of the full blockchain,

e Correctness threshold: for all instances of consensus I decided by this configuration, the inequality
%” < Cy is verified, where Cy is the number of correct nodes in 11 for consensus I.

We assume that the nodes always have enough storage capacities to store the blockchain-related infor-
mation and the non-committed transactions issued by the clients.

In the following, n, n’, ... represent the number of nodes participating in the consensus, and ¢, ¢/, ... are
upper-bounds on the number of Byzantine nodes among them.

Definition 2. A new configuration, with regard to a configuration 11, is a configuration II' of n’ nodes,
fulfilling the following additional requirements :

e Network: we have an asynchronous point-to-point reliable network for all correct nodes in TIUIT,

e Listening: all correct nodes of I1' expect to receive information from the current configuration, and
possess the code to handle this information correctly. Receiving information from the DNS service
introduced below belongs to this Listening requirement.

Note that we do not make any assumption on the behavior of the nodes that are not part of the current
configuration: once they accomplished their duty and have been removed from the set of decider nodes, they
can become Byzantine, crash, etc.

To ensure the consistency of the information present in our blockchain, nodes sign the new config-
urations they propose, using an asymmetric encryption scheme. Thus, each node possesses a couple of
private-public keys, and each node knows the public key of every other node taking part in the consensus.
We assume that no private key can be forged or stolen.

For new nodes to know the current configuration, we need to make an additional trust assumption. For
clients to know the current configuration without needing to examine the whole blockchain, we assume to
have a correct DNS service keeping track of the latest configuration. For new incoming nodes, they also
need to examine the whole blockchain to prevent corruption of the first blocks a posteriori. This service can
be distributed, in order to be Byzantine fault tolerant, but we consider it as a whole throughout our paper, as
it is out of the scope of this paper. Similarly to Bitcoin [31] that hardcodes few DNS seeds, the location of
this server has to be static for clients and nodes to be able to contact it without any further information.

4 The Community Blockchain

In this section, we introduce community blockchains that bridge the gap between public and consortium
blockchains. Community blockchains differ from public blockchains by constraining the set of deciders for
a particular block and differ from consortium or private blockchains by letting all nodes decide upon some
block. To this end, the community blockchain reconfigures periodically the set of deciders by replacing the
current configuration by a new configuration that is valid.

“4Point-to-point reliable channel can be implemented with secure channels in a partially synchronous environment.
SWe actually only need a network between correct nodes, hence the difference in Definition 2.

genesis [« config [« config [« config
block block block block
listing tx tx listing tx tx listing tx tx listing tx tx
Do [« block <€ block <€ D1 |« block [€— block (€< D2 |« block € block €«-| D3 [« block [«€— block
b1 b2 b3 b4 b5 b6 b7 b8
e — | e — | e — | e — |
blocks decided by Do blocks decided by D1 blocks decided by D2 blocks decided by D3

Figure 1: A community blockchain where each transaction block is decided by the deciders listed in the
last preceding configuration block (starting from the genesis block on the left and where each block points
backward towards its predecessor block(s))

4.1 Two lists of blocks

The community blockchain contains two types of blocks: the classic or transaction blocks that contain
transactions and the configuration blocks (cf. Definition 3) that contain a list of deciders. As indicated
in Figure 1 these two types of blocks are linked so that the blockchain maintains a structure similar to a
skip list. At the bottom, all transaction and configuration blocks are chained together with a linked list. This
guarantees that the configurations and the set of transactions are totally ordered. At the top, the configuration
blocks are chained together with another linked list. This helps verify that the current configuration is
properly signed by the deciders of the previous configuration.

Each block is linked to the previous block, no matter their respective type: we keep the general structure
of a chain of blocks. In addition, each configuration block is linked to the previous configuration block.

The number of transaction blocks between two configuration blocks is not fixed. We will come back on
the details about blocks in Section 5.8.

Definition 3 (Configuration block). A configuration block is a block containing:

1. Information of the decider nodes of the new configuration: IP addresses, ports and public keys.

2. The signatures of this new configuration by at least t + 1 deciders of the previous configuration.

3. The hash and index of the last configuration block (indicating the previous configuration).

4. The hash and index of the last transaction block (indicating the last committed transactions).

Note that the genesis block is a special kind of configuration block that does not contain the hash and
index of previous blocks, but simply the information of the decider nodes of the initial configuration.
4.2 Deciding upon a new configuration

The idea of reconfiguration simply consists of replacing the current configuration in use by the system by a
new configuration. In a community blockchain system, a reconfiguration must guarantee for example that the
system can keep serving the transaction requests while the set of decider nodes is being reconfigured. This
implies redirecting transactions from a configuration to a new one as soon as the reconfiguration occurs (and
the new configuration decider nodes are aware of it) but not earlier. We present the goal of the reconfiguration
a community blockchain should ensure below.

Definition 4 (Reconfiguration). A reconfiguration replaces a configuration c by a different (possibly over-
lapping) configuration ¢’ such that:

1. ¢ is proposed by a node;

2. all correct nodes of ¢ agree upon c';

3. verifies a validity predicate (¢’ is valid);

there is no service interruption;6

there is no data loss;

AN I

data integrity is preserved,
7. the reconfiguration takes a finite amount of time.

The requirements (1-2) and (7) are guaranteed by a consensus algorithm. The data integrity (6) is
preserved by the community blockchain. We explain how a configuration can be valid (3) and how the
system stays uninterrupted (4) while data is kept (5) below.

4.3 Verifying that a configuration is valid

Depending on the application, some configurations are not acceptable. This could be because all deciders
belong to the same geographical region, because they are managed by the same company, because they
are not sufficiently random or simply because the number of deciders is not acceptable. In a community
blockchain, the correct nodes of the current configuration have the responsibility of assessing whether a pro-
posed configuration is acceptable. As mentioned in the Introduction, these decider nodes might also have
the responsibility of proposing suitable configurations for the application-dependent context (e.g., nodes
hosted in different continents and countries, representing different institutions, etc). Although there is no
way to distinguish a Byzantine node from a correct node, especially if the Byzantine send correct messages,
a recent cryptographic protocol, Polygraph [8], identifies deterministically Byzantine nodes that are respon-
sible for a disagreement. Future work could exploit the techniques of such a protocol to remove responsible
nodes from a valid configuration. Provided that every correct node has a way to identify an acceptable con-
figuration, we propose a mechanism to guarantee that only an acceptable configuration can be included in a
configuration block.

We assume in the following that we have at our disposal a predicate valid_configuration that allows us
to decide whether a configuration is valid or not. This predicate is application-dependent, and its implemen-
tation is out of the scope of this paper.

To this end, we use a public-key cryptosystem and list in each configuration block, starting from the
genesis block, the public key (in addition to their IP address and port number) of the decider nodes of the
corresponding configuration. This allows decider nodes to sign (using their private key) the new config-
uration that they decide. This signature is easily verifiable using the decider public key available in the
configuration block.

To propose a new configuration, a node must first send this configuration to the other n — 1 nodes and
launch a binary Byzantine consensus. Each node receiving this configuration takes part in this binary Byzan-
tine consensus instance and checks whether the configuration is acceptable by proposing 1 (if acceptable)
or O (if not). By definition of the binary Byzantine consensus, the value that is decided has to be proposed
by a correct, hence the consensus decides 1 (meaning that a consensus is reached regarding the acceptability
of this configuration) only if at least one correct node found it acceptable. If the consensus decides 1, then
every correct node signs the configuration and sends it to the requester.

We write that some information is signed by a configuration c if it is signed by at least + 1 nodes among
the n decider nodes of this configuration c. As ¢ is the maximum number of Byzantine nodes, ¢ + 1 signatures
guarantee that at least one signature comes from a correct node. Given a current configuration ¢, we write
that a newly decided configuration ¢’ is valid and that valid(c’) returns true if the configuration ¢’ has been

ORecall that we assumed that the memory of our nodes is always sufficient to receive the proposed transactions.

signed by the current configuration ¢, and contains the hashes and indexes of both the last configuration
block and last transaction block.

Note that, for the sake of simplicity, we assume that if a correct node proposes a configuration block,
every correct node proposes a configuration block too. The configurations proposed by different nodes can
be identical or different: this detail does not matter in our algorithms. As precised in Section 5.4, if several
valid configurations are proposed, the consensus algorithm of the underlying blockchain will decide which
configuration will be the next one.

4.4 Transferring blocks and pending transactions

Once a new configuration is decided, we need to distinguish whether new decider nodes absent from the old
configuration are added to the new configuration, whether decider nodes are removed, or both new decider
nodes are added and old decider nodes are removed. In particular, adding decider nodes requires to transfer
the blockchain to the new node whereas removing decider nodes requires to have these removed nodes stop
accepting new transactions and transfer their pending transactions to the deciders of the new configuration.

Adding nodes If we add nodes, without removing any of the former participants, to keep our threshold
of strictly more than two third of correct nodes, we need to be sure that the newly added nodes are aware
of their new role, and possess enough information to perform their task. Thus, the old nodes send to all
new nodes a copy of the up-to-date blockchain, and the new nodes need to have the full knowledge of this
blockchain, by verifying its chain of hashes, before taking part in the consensus. Note that as our model is
partially synchronous, we can safely launch the next consensus instance without waiting for the new nodes
to be up-to-date.

Removing nodes If we only remove nodes, the data that might be lost is not the blockchain, or the already
committed transactions, but the pending transactions. Thus, in our reconfiguration mechanism, the nodes-
to-be-removed have to transfer all their transactions to nodes of the new configuration, which will then
propose them to the new consensus instance. To ensure that they eventually transfer all of them, they stop
acknowledging and taking into account arriving transactions after the new configuration has been decided.
Each node can thus stop working when it has no more transaction to send.

Adding and removing nodes To handle the general case, we just use two steps: we first add the needed
nodes, and once these are ready to perform consensus because they have caught up with the latest state of
the blockchain, we remove the unneeded ones.

4.5 Catching up with the most up-to-date information

In this section, we explain how a new node aware of some old configuration can retrieve the most up-to-date
configuration and block information. The difficulty is that do not impose an old configuration of n nodes
to remain correct, hence by the time the new node tries to catch up, the old configuration it knows is not
guaranteed to have strictly more than %" correct nodes anymore.

4.5.1 With the latest configuration

A correct node part of the current configuration keeps receiving information regarding the ongoing recon-
figuration. As new nodes may join and leave, they need a mechanism to retrieve the latest configuration to
know where to send their transaction and balance requests. In particular, by the time a new node joins the
system, the system may have moved to the k' configuration where the k — 1 preceding configurations may

be faulty in that they no longer have less than a third of Byzantine nodes. To cope with this issue, every new
correct node bootstraps by contacting the DNS service that provides them with the latest configuration.

More specifically, there are two cases where we need to be able to verify that a configuration has actually
been decided by the consensus:

e When a configuration has just been decided.

e When a node connects to the blockchain for the first time, or rejoins after at least one configuration
change.

In the first case, a node already knows for sure the current configuration. Thus it can know, when receiving
a configuration, if it has been signed by at least r + 1 nodes of the current configuration (cf. Section 4.3).
Moreover, it can wait for receiving ¢ + 1 identical configurations, sent by the current configuration, which
then are correct. In the second case, we have to trust the DNS service to give the current configuration. Then
we connect to the current configuration as indicated by the DNS service, and listen for the next configuration
changes.

4.5.2 With the latest state of the blockchain

A node receiving a new valid configuration block looks into the list of decider nodes of the new configura-
tion, and sees whether it is part of the new configuration or not.

If the node has to become a decider node, it needs to know about the latest state of the blockchain, in
order to have the same validity predicate for transactions as all other correct nodes. Thus, all decider nodes
of the old configuration send the whole chain of blocks to new nodes. Upon reception of # 4+ 1 identical
blockchains from different decider nodes of the old configuration, the new node knows that at least one has
been sent by a correct node, and thus represents the current state of the blockchain. The new node then
knows the whole history of the blockchain, and is able to perform its duty.

Note that we cannot use the simple distinction of light vs. full nodes used in classic blockchain because
our goal is to tolerate Byzantine failures deterministically for critical applications. In particular, even a light
node cannot trust another full node as it can behave maliciously. This is reason why a new node (that could
be viewed initially as light) needs to contact at least r + 1 nodes. Note that the same kind of technique is
used in the Red Belly Blockchain to prevent a wallet that cannot store the entire blockchain from taking into
account false information from a decider node [13].

S Putting the Community to Work

In this section, we propose a community blockchain implementation, called ComChain, that builds upon the
Red Belly Blockchain [24]. The Red Belly Blockchain features the Democratic Byzantine Fault Tolerant
(DBFT) consensus algorithm [11] to solve the Blockchain Consensus problem, where nodes cooperate to
select a block [12] as restated in Section 5.2. Its particularity is its absence of leader that allows it to reach
an unprecedented throughput in terms of the number of transactions it can commit per second [24].

We consider a system where a predetermined set of decider nodes belong to an initial configuration
stored in the genesis block. These nodes use a reliable multicast described in Section 5.1 to reliably exchange
messages among the decider nodes of a configuration. The choice of the initial configuration is left to future
work but, depending on the application, could require nodes to belong to different geographical regions,
different institutions, and having distinct hardware and system specifications for the sake of security.

5.1 Reliable multicast

In order to exchange information between the nodes of a configuration, we define two reliable multicast
primitives based on the classic definition of reliable broadcast, presented by Bracha [3, 4] and reused in
DBFT [10]. Note that the term “multicast” is used here to indicate that the information is propagated to
subsets of decider nodes represented by configurations, as opposed to the classic “broadcast” that propagates
to all nodes without distinction. The reliable broadcast is a communication primitive among » nodes where
at most ¢ < 7 can be Byzantine [3]. This abstraction provides two primitives, RB_broadcast and RB_deliver.
With p a node, in one instance of the broadcast protocol, this abstraction has the following properties:

e Validity. If p is correct and a correct node RB-delivers a message m from p, then p RB-broadcast m.
e Unicity. A correct node RB-delivers at most one message from p (whether p is correct or not).

e Termination-1. If p is correct and RB-broadcasts a message m, all the correct nodes eventually RB-
deliver m from p.

o Termination-2. If a correct node RB-delivers a message m from p (possibly Byzantine) then all the
correct nodes eventually RB-deliver the same message m from p.

As we need to make a distinction between messages containing proposals for transactions, for configu-
rations or agreement on the validity of a configuration, we define new multicast primitives, that precise the
set of nodes it is sent to.

Definition 5. We define two operations RM _broadcast_new and RM _deliver_new, being the RB_broadcast
(respectively the RB _deliver) operation from a node to all nodes of the new configuration not being part of
the old configuration.

Definition 6. We define two operations RM _broadcast_old and RM _deliver_old, being the RB_broadcast
(respectively the RB_deliver) operation from a node to all nodes of the old configuration.

5.2 Blockchain consensus

The blockchain consensus consists for a set of nodes to collaboratively decide upon a new block [10, 12].
This problem is different from the proof-of-work Blockchain problem [31, 36] and the classic Byzantine
agreement problem [2, 5, 38] where all nodes compete in trying to force others to decide the block they pro-
pose. We restate below the definition of blockchain consensus as originally referred to as Validity Predicate-
based Byzantine Consensus [10, 12, 11].

Definition 7 (Blockchain Consensus). With the assumption that every correct process proposes a value
to the consensus, each correct process decides on a value while satisfying Termination, Agreement and
Blockchain validity:

e Termination: Every correct process decides after a finite amount of time.
o Agreement: Two correct processes decide on the same value.
e Blockchain validity: The value decided by a correct process verifies a predefined predicate valid().

Note that the Blockchain validity allows nodes to collaboratively decide a value that results from all the
proposed values, as opposed to the validity of the classic Byzantine agreement where the value decided can
only be one of the proposed value.

10

Algorithm 1 Collaborative signature of configurations

function HANDLESIGNATUREREQUESTS
when RB_deliver signing request for ¢ from p; do
BinaryConsensus(valid_configuration(c), GETID(c, p;))
end
when BinaryConsensus{id’} returns 1 do
(c',pj) < GETITEMSFROMID(id")
¢ + SIGN(c')
Send ¢’ to p;
end
when RB_deliver signed configuration ¢” from p; do
if EQUALCONFIGURATIONS(c”, self .sc) then
MERGESIGNATURES(c”)
end if
end
end function

Crain et al. [10] propose a solution to the blockchain consensus problem where each correct node pro-
poses a set of transactions to be committed. It uses a reliable broadcast primitives to exchange these pro-
posals among correct nodes until these nodes obtain an array of n —¢ proposals. Then every correct node
spawns 7 binary consensus instances and fill a bitmask with the n corresponding decisions. Finally, they
apply the bitmask to the array of proposals to extract multiple sets of transactions. The decided block is
built from all the extracted transactions whose signatures are correct and that do not conflict with each other.
An instance of consensus is one execution of a consensus algorithm on a set of proposals.

5.3 Collaboratively signing a configuration

As described in Section 4.3 , before proposing a configuration, a node has to gather + 1 ECDSA’ signa-
tures of nodes of the current configuration. Therefore, a correct node broadcasts the new configuration for
signature by the current configuration. Upon reception of signature requests from other nodes, it executes
Algorithm 1. For the sake of symmetry, a node broadcasts also the new configuration to sign to itself. We
assume that true and 1 are equivalent, as well as false and 0. As validity is application dependent (cf.
Section 4.3), we consider that each correct node is equipped with a predicate valid_configuration that, given
a configuration c, returns true only if ¢ is valid according to the current application.

As binary consensus is needed to decide whether a configuration is valid, let us introduce two nota-
tions for the binary consensus instance associated with a particular decider node id and the configuration it
proposes V.

Definition 8. BinaryConsensus(v,id) represents the proposal of the (binary) value v to the instance of the
binary consensus uniquely identified with id. BinaryConsensus{id'} represents the binary consensus in-
stance having identifier id'. We say that BinaryConsensus{id'} returns when a value has been decided for
the binary consensus instance of identifier id'.

We also define two additional methods to turn this pair of (v,id) (where v is a binary value or boolean
and id is a node identifier) associated with a binary consensus instance, into the identifier id’ of this binary
consensus instance and to reverse the operation. GETID is defined in Algorithm 2. GETITEMS is the
associated getter. We use self.sc.c to refer to the configuration (if any) that the node wants other participants
to sign. A configuration as stored by a node is a tuple:

"The Elliptic Curve Digital Signature Algorithm (ECDSA) is the asymmetric crypto-library used by Bitcoin [31].

11

Algorithm 2 From a signature request to a binary consensus

function GETID(c, p;)
h < sha256(c.i) /I with " the concatenation
self.consensus_ids[A] < (c, i)
return hash

end function

e ¢, the configuration as a set of node identifiers, initially @ and
e signatures_set, an array of signatures indexed by node identifiers, initially 1 (undefined) at all indices

These functions are implemented with a dictionary-like structure that maintains the computed identifiers
for the launched binary consensus instances. This structure allows us to retrieve the configuration and the
process identifier from the identifier of a binary consensus instance.

The MERGESIGNATURES function groups the signatures present in the incoming signed configuration
with these already gathered for the next-to-propose configuration. It is described below in Algorithm 3.

Algorithm 3 Merging two signatures of the same configuration

function MERGESIGNATURES(c)
h + sha256(self .sc.c);
for ns in c.signature_set do
already_signed < false;
for signature in self .sc.signatures_set do
if signature.signer = ns.signer then
already_signed < true;
end if
end for
if not already _signed then
if ns.signer in current_configuration and
verify(ns.signer,ns.hash) = h then
self .sc.signatures_set.append(ns)
end if
end if
end for
end function

5.4 Deciding upon a new configuration

To decide on the next configuration, we launch a multivalue consensus algorithm among all nodes, whose
proposed and decided values are not necessarily binary values. To this end, we use the partially synchronous
DBFT algorithm [10] as a black box, with the serialized signed configuration as input and the function
HASENOUGHSIGNATURES, presented in Algorithm 4, as valid predicate. In this algorithm, cc refers to the
current configuration.

More precisely, the DBFT algorithm returns the value decided by all correct processes. We will use
this value to fulfill the configuration change by inputing it in the suitable functions described in the next
section. To decide whether we have to execute the AddNodes function, the RemoveNodes function or both,
we simply check the inclusion of one configuration in the other: (i) if the new configuration is strictly
included in the old configuration then we remove nodes; (ii) if the old configuration is strictly included in
the new one, then we add nodes; (iii) if none of them is included in the other, then we run both AddNodes

12

Algorithm 4 The valid predicate for configurations

function HASENOUGHSIGNATURES(c)
h < sha256(c.configuration);
counter < 0;
for s in c.signatures_set do
if s.signer € cc N verify(s.signer, s.hash) = h then
counter < counter +1;
end if
end for
return counter >t + 1
end function

and RemoveNodes; (iv) if each of them is included in the other, then we do not do anything as the new
configuration is the old one.

The set of signatures being finite, our valid predicate terminates in finite time. Thus, as the consensus
algorithm presented in [10] terminates in finite time, a decision about a potential new configuration is made
in finite time.

5.5 Transition from the current to the new configuration

The functions we use above return a configuration proposed by a node that verifies validity conditions
(modeled by the valid_configuration predicate) and on which all correct nodes agree. The behavior after
having chosen such a new configuration differs from the one after having decided a block of transactions.

As previously indicated in Section 5.4 , after the consensus returns a value, we need to process this value
with the functions previously described in Section 4.

5.5.1 Adding nodes

If the list of nodes of the current configuration is strictly included in the new list of nodes, then we are only
adding new nodes to our community.
For old nodes to add new nodes, they use the protocol presented in Algorithm 5.

Algorithm S Participation to the consensus when adding nodes

function DECIDECONFIGURATIONWHENADDING(c)
ADDCONFIGURATIONBLOCK(c)
RM _broadcast_new blockchain
RM _broadcast_old the last block index
Run consensus on the new configuration
when (RM _deliver_old last index of n' — ¢’ nodes) do
Inform the DNS service that transactions should be
sent to the new configuration
// clients should send their txs to the new config
end
end function

The function ADDCONFIGURATIONBLOCK used in Algorithm 5 simply adds a new configuration block
to the blockchain. We do not need to wait for the new nodes to be ready, because according to their spec-
ification, described below in Section 5.6 , they will not take part in the consensus before being up-to-date.
Thus, if these new nodes are needed as correct nodes to reach consensus, the consensus algorithm will wait

13

for them to be up-to-date before deciding anything. We could implement a waiting mechanism to wait for
them before launching the next consensus instance, which would only reduce the performance.

Provided that new decider nodes RM _broadcast_old the last index of the blockchain in finite time (shown
in Lemma 4), the node receives the last index of the blockchain from all correct nodes of the new configu-
ration in finite time. Thus it sends a request to update the DNS in finite time.

5.5.2 Removing nodes

If the new list of participants is strictly included in the list of nodes representing the current configuration,
then we are removing nodes. We do so by using the protocol described in Algorithm 6 where self depicts
the node running the function.

Algorithm 6 Participation to the consensus when removing nodes

function DECIDECONFIGURATIONWHENREMOVING(c)
Inform the DNS service that txs should be sent to the new config;
// clients send their txs to the new config.
if self in the nodes to remove then
stop acknowledging transactions
start transmitting the queued txs to the new config
when the node has no transaction left do
shut down
end
else
perform consensus with the new configuration
end if
end function

As a node only has a finite number of transactions to process, and as a node-to-be-removed stops ac-
cepting transactions, such a node shuts down in finite time.

5.5.3 Adding and removing nodes

Replacing an old configuration by a new configuration that is independent can be achieved by both adding
and removing nodes from the old configuration. With the old configuration old_configuration, and the
new configuration ¢, we use the first case above (adding nodes) to switch from old_configuration to
old_configuration U c, then the second case (removing nodes) to switch from old_configuration\Uc to c.

Algorithm 7 depicts how to merge these two cases. It requires every node to have already stored both c,
the next configuration, and c U old_configuration, with at least ¢ + 1 signatures. Thus, we need:

e cither each node to sign both the requested configuration ¢ and the union of this configuration ¢ with
the current one old_configuration (in Algorithm 1) and to transmit this information to every other
node,

e or to ask every node to request the signature of ¢ U old_configuration before creating the configuration
block.

The former approach adds complexity in the storage and retrieval of signed configurations, but limits the
exchanges on the network. The latter approach is less efficient, because each node will launch n binary
consensus instances in addition to the normal complexity, in order for each of them to get the union of
configurations signed.

14

Algorithm 7 Behavior of a node participating to the consensus

function DECIDECONFIGURATIONGENERALCASE(c)
addConfigurationBlock(c U old_configuration)
run consensus on the union of old and new configs.
when (RM _deliver_old last index of n’ —¢' nodes) do
Inform the DNS service of the new config.
// clients send their txs to the new config.
if self not in c then
stop acknowledging transactions
end if
end
if self not in c then
when self has no transactions left do
RM_broadcast_new ‘“no transactions left”;
end
else
RM _broadcast_new “no transactions left”;
end if
when RM _deliver_old n — ¢ times “no transaction left” do
ProposeConfiguration(c, change);
end
end function

5.6 Behavior of a new node

So far, we only focused on the behavior of nodes that took part in the blockchain. We now focus on the
behavior of newly joining nodes. Algorithm 8 presents the way new nodes take part in the consensus.

Algorithm 8 Protocol used by the nodes of the new configuration to prepare themselves for running the
consensus
function PREPARECONFIGURATION
when RM _deliver_new ¢ + 1 identical blockchains do
store this blockchain as the valid one
RM _broadcast_old index of the last block
start behaving like a decider node
end
end function

5.7 Safety

In this section, we prove that our algorithm decides a new configuration using a Blockchain Consensus
algorithm (see Definition 7). We also prove that the threshold used in the definition of a new configuration
(see Definition 2) is correct.

5.7.1 Blockchain validity

For configurations, the validity predicate we consider is the valid_configuration predicate. Thus we have to
prove that a configuration decided by a correct node verifies that predicate.

Lemma 1. A configuration decided by a correct node verifies the valid_configuration() predicate.

15

Proof. At line 2 of Algorithm 1 , we see that each correct node will propose the result of the
valid_configuration predicate on a configuration to the binary consensus instance associated with this
configuration. Thus, the binary consensus instance related to a configuration that does not satisfy the
valid_configuration predicate will return O: a binary consensus instance can only return a value proposed
by a majority of nodes, and we have at most + Byzantine nodes. Hence if every correct node proposes
0 = valid_configuration(invalid_configuration) at line 2 of Algorithm 1, at least 27 + 1, thus a majority of,
nodes propose 0, which forces the consensus algorithm to return 0.

At line 6 of Algorithm 1 , we see that only Byzantine nodes can sign an invalid configuration, which
is at most ¢: a correct node signs only configurations for which the binary consensus instance returned 1,
and thus are valid with respect to our validity predicate. As the valid predicate of the underlying consensus
algorithm is the HASENOUGHSIGNATURES function presented in Algorithm 4 , only configurations signed
by at least # + 1 nodes of the current configuration can be decided. Among these ¢ + 1 nodes, at most ¢ are
Byzantine, so at least one correct node signed the configuration. Thus, a configuration verifying the valid
predicate of the underlying consensus algorithm verifies the valid_configuration predicate.

As the underlying consensus algorithm ensures that the values decided by correct nodes verify its valid
predicate, a configuration decided by a correct node verifies the valid_configuration predicate. O

We proved that all configurations decided by correct nodes are valid.

5.7.2 Agreement

In this section, we prove that the decision on a new configuration respects the Agreement property of the
Blockchain consensus (see Definition 7).

Lemma 2. Two correct decider nodes decide on the same configuration.

Proof. As the configuration decided by a correct node is the result of a multivalued instance of a consensus
algorithm verifying the Blockchain consensus (see Section 5.4), the Agreement property holds. O

We proved that all correct nodes will decide upon the same new configuration for every reconfiguration.

5.7.3 Termination

In this section we prove that we can always change the configuration in a finite amount of time. We do not
prove that every single function terminates, but focus on the parts that could last forever. More precisely, by
relying on the termination proof of DBFT [10], we show that we can have a configuration signed within a
finite amount of time (Lemma 3), and that new nodes are up-to-date after a finite amount of time.

Lemma 3. A node having requested signatures for a valid configuration receives this configuration signed
by the current configuration within a finite amount of time.

Proof. The RB-broadcast abstraction ensures that every correct node receives the configuration to sign after
a finite amount of time. Thus, with p; the process proposing the configuration c, every correct node calls
BinaryConsensus(valid_configuration(c), GETID(c, p;)), where valid_configuration(c) should return 1.

Crain et al. [10] prove that the binary consensus we use terminates, and signing occurs in a finite amount
of time. Thus, the node having requested signatures for the above mentioned configuration receives at least
2t + 1 signed configurations in finite time.

Merging the signatures is achieved through two loops over finite sets, and thus terminates. Hence, a
node having requested signatures for a valid configuration has this configuration, signed by the current
configuration in a finite amount of time. O

16

We proved that a node is able to propose a valid configuration to the consensus in finite time.

The decision upon a new configuration is given by the underlying consensus algorithm, thus takes a
finite amount of time (see Definition 7).

We now prove that new nodes contribute to the consensus after a finite time period.

Lemma 4. A correct new node participates to the consensus after a finite timeframe.

Proof. Crain et al. [10] ensure that we reach consensus in finite time, thus a new node receives at least n —t >
2t 4 1 up-to-date blockchains in finite time, thanks to the RB-broadcast abstract presented in Section 5.1 ,
and the partial synchrony assumption.

Thus, a new node receives at least f + 1 identical blockchains in finite time, one of which has been
sent by a correct decider node, and thus is correct, and is then up-to-date with the latest history of the
blockchain. O

We proved that new nodes will not be considered Byzantine because they are not up-to-date, and that
they will indeed be eventually up-to-date.
We now prove that the DNS knows the decided configuration in finite time.

Lemma 5. The DNS service is updated after a finite amount of time.

Proof. To be Byzantine fault tolerant, the DNS has to wait for an identical update message from at least
t + 1 different decider nodes of the current configuration.

As precised at the end of Section 5.5.1, and using Lemma 4 , when adding nodes, all correct nodes from
the previous configuration send an update message to the DNS in finite time.

When removing nodes, updating the DNS is the first step of the algorithm, thus the update message is
also sent in finite time to the DNS by all correct nodes.

Thus, in every situation, the DNS receives at least r + 1 identical update messages in finite time, thanks
to the partial synchrony assumption. Hence, the DNS is updated after a finite timeframe. O

We proved that clients and newly joining nodes will have a reliable way of knowing the current config-
uration in a finite amount of time after the change actually occurred.

5.7.4 Threshold for the new configuration

In this section, we prove that the resilience of the consensus algorithm does not change between two config-
urations.

Lemma 6. 7o be able to run an instance of a consensus algorithm with a threshold of Byzantine tolerance
n > f(t), using the new configuration, we need to verify :

n' > f(t)

where n' is the number of nodes in the new configuration, and t' the number of Byzantine nodes in this same
configuration and for this particular instance of consensus.

Proof. When we change the nodes taking part to this consensus algorithm, the newly added nodes need to
update their knowledge of the current blockchain before taking part to the consensus.

Lemma 4 ensures that new correct nodes will contribute to the consensus after a finite time. As we do
not use the bound on the delay messages can suffer on the network in our consensus algorithm (it only needs
the partial synchrony assumption), we do not need to wait for the nodes to be up-to-date before launching
the next consensus instance on all up-to-date nodes of the proposed configuration.

Thus we can include all the new nodes in the next consensus instance, and as the new configuration
respects the same threshold, they will eventually be enough correct nodes to perform consensus. O

17

Lemma 4 was proven using the DBFT algorithm [10], but the result we use from this paper is a liveness
result. Hence, Lemma 6 still holds with consensus algorithms having the same liveness properties.

In addition, as algorithms needing f(x) = 2x+ 1 exist [10], our threshold for the ratio for the number of
correct nodes in a new reconfiguration is valid.

5.8 A resilience optimal blockchain service

In this section, we explain how ComChain piggybacks transactions and configurations within the same block
for the sake of efficiency and demonstrate that it is resilience optimal.

5.8.1 Piggybacking transactions and configurations

So far, we have handled only configuration blocks, assuming that for a given consensus instance, either only
configuration blocks are proposed, or only transaction blocks are proposed. This is also an easy way to
dissociate the processing of the configurations and transactions.

The assumption we made is unrealistic. For an implementation, we merge the definitions of configu-
ration block and transaction block: every block contains both a configuration (possibly empty or null) and
a batch of transactions (possibly empty). We then have to adapt the way we validate a block: we split the
block in the two aforementioned types of blocks, validate each one separately, and say that a general block
is valid if both the transaction block and the configuration block we built from are valid. Naturally, we have
to consider an empty transaction block or an empty configuration block as valid.

5.8.2 Resilience optimality of ComChain

A blockchain service requires consensus to work. For the sake of efficiency, ComChain relies on a par-
tially synchronous signature-free consensus algorithm DBFT [11] that is resilience optimal. The resilience
optimality of ComChain thus follows from the fact that it tolerates as many Byzantine failures as DBFT.

Theorem 1. The ComChain service is resilience optimal.

Proof. ComChain offers a blockchain service where distinct distributed servers may include in blocks, the
transactions requested by potentially overlapping sets of clients. Hence ComChain requires a n-shared
asset transfer object that is known to require consensus number n [25], and cannot be implemented without
consensus. In addition, the consensus protocol of ComChain, DBFT [11], is known to be resilience optimal
while tolerating ¢ < n/3 Byzantine failures [10]. It follows that the ComChain service is resilience optimal
as well, as it requires consensus to work and it tolerates the same number ¢ < n/3 of Byzantine failures. [

6 Evaluation

In this section, we deploy ComChain on a distributed set of machines to measure the latency and throughput
of reconfiguration between and transaction invocations. The experiments are distributed on 12 indepen-
dent physical machines and the transactions use the Unspent Transactions Output (UTXO) model signed
using the Elliptic Curve Digital Signature Algorithm (ECDSA) of Bitcoin [31] also used in the Red Belly
Blockchain [11].

18

I Binary consensus B Multivalued consensus

N Getting signatures B Reconfiguration
4.0
2.00
35 1
1.75
3.0 1
1.50
b €,
c o<
S1.25 S
g)
£ £2.0 A1
“E) .00 g
= =15 1
Fo0.75 =
1.0 1
0.50 A
095 - 0.5 1
0.00 - 0.0 7 < 7Sy © ~ © o o —
— N o < (') o M~ o — —
Number of nodes to add Number of nodes in the initial configuration

(a) Time in seconds to make a decision and to perform (b) Time in seconds to make a decision and to perform re-
reconfiguration when starting with 4 nodes, depending on configuration when adding 1 node, depending on the num-
the number of nodes we want to add. ber of nodes of the initial configuration.

Figure 2: Evaluation of the reconfiguration when adding nodes.

6.1 Experimental settings

We deployed our experiments on a distributed set of physical machines using the Emulab platform®. We
ran the experiments on up to 12 machines, each with two 64-bit Xeon processors running a total 8 cores at
2.4 GHz with 2 GB of memory and Ubuntu 14.04. We launched all nodes at the beginning of an experiment,
one virtual machine per physical machine to make sure all communications went through physical links,
with the DNS service running on the same physical machine as the first of these nodes.

6.2 Time to add new nodes

As presented in Figure 2, we focused on the impact of the size of the initial and final configurations on the
time needed to perform one reconfiguration.

We observe in Figure 2a that increasing the number of nodes of the final configuration increases only
slightly the time needed to perform the (binary and multivalue) consensus part: such an increase was ex-
pected, but as it is only due to the increase of the size of the configuration block, the impact is relatively
small. The impact on the reconfiguration part is however more important. The overall trend is an increase,
due to the number of nodes that need to update themselves. The lack of a steady trend can be explained by
the % ratio of correct nodes over total nodes: we evolve here at the limit of the threshold, thus the number
of nodes we have to wait for, or the ratio of nodes we have to wait for over the total number of new nodes,
does not evolve linearly.

In Figure 2b, we depict the impact that the number of nodes in the initial configuration has on the time
needed to perform consensus. We observe that the time to reconfigure increases only slightly, which was to

8«Emulab is a network testbed, giving researchers a wide range of environments in which to develop, debug, and evaluate their
systems.” We used the datacenter installation located at the University of Utah (see www.emulab.net).

19

be expected: as we waited for all nodes to be up-to-date, the overhead due to the reconfiguration increases
only slightly throughout the experiment. Our reconfiguration mechanism is thus scalable with the number
of added nodes.

6.3 Time to remove existing nodes

We carried out similar experiments for the nodes removal, whose results are presented in Figure 3. We first
observe on Figure 3a that the number of nodes we remove does not impact the time needed to perform the
reconfiguration. The time needed to remove nodes varies actually from around one millisecond depending
on the number of nodes we remove. This confirms that the impact of the size of the new configuration on
our reconfiguration mechanism is negligible.

I Binary consensus B Multivalued consensus
N Getting signatures B Reconfiguration
4 4
43 £%
c o
o 9
8 [7]
@ c
= ‘021
o £
k= ~
}_
1
O R
3] o M~ [ee] (=] o — o~
Number of nodes to remove Number of nodes in the initial configuration

(a) Time in seconds to make a decision and to perform (b) Time in seconds to make a decision and to perform

reconfiguration when starting with 12 nodes, depending reconfiguration when removing 1 node, depending on the
on the number of nodes we want to remove. number of nodes of the initial configuration.

Figure 3: Evaluation of the reconfiguration when removing nodes.

Then, considering the impact of the number of nodes in the initial configuration (see Figure 3b), we
can make the same remarks than before: the time spent for reaching an agreement increases with the initial
number of deciders, but the actual reconfiguration period increases only slightly and irregularly due to our
ratio.

Though it slightly slows down the blockchain, the reconfiguration itself takes less time than an instance
of consensus. In addition, we expect the time needed to reconfigure not to increase significantly with the
number of nodes with the current implementation, and thus that its impact on a real-world implementation
should be negligible. However, our implementation does not currently transfer the blockchain from one
configuration to the following.

20

B Transaction blocks I Multivalued consensus

I Binary consensus I Reconfiguration
B Getting signatures B Transaction blocks
40
60
35
30 1 50
- .
€05 S 40
O Q
g c
£20 1 =0
[}
£ £
=15 1
20 A
10 1
a
5
0
0 - < o © ~ © o o —_
o — (a\) (32} < w O ~ (oo} . P . — . —
Number of nodes to add Number of nodes in the initial configuration

(a) Time in seconds to make a decision and to perform (b) Time in seconds to make a decision and to perform
reconfiguration and process 20 transaction blocks when reconfiguration and process 20 transaction blocks when

starting with 4 nodes, depending on the number of nodes adding I node, depending on the number of nodes of the
we want to add. initial configuration.

Figure 4: Evaluation of the reconfiguration and transactions processing when adding nodes.

6.4 Mixing reconfiguration and transaction requests

On Figures 4 and 5, we display the total time needed to process 10 transaction blocks (in blue), one recon-
figuration, then 10 other transaction blocks (in brown) using the new configuration. As expected, adding
nodes increases the time to process the same number of blocks: as the latency of the underlying Red Belly
Blockchain (without reconfiguration) tends to decrease with the number of nodes [24], adding nodes will
slow down the processing of our 21 blocks.

A more interesting result is well-illustrated on Figure 5a: though reducing the number of nodes should
speed up the second sequence of transaction blocks, we see that the time needed to process these increases.
It is most likely due to the slowest node trying to catch up with the fastest ones, as each node has been
temporarily unaware of the other’s messages during its reconfiguration. This behavior is less striking but
also present on Figure 5b.

6.5 Impact of the reconfiguration on the transaction throughput

In order to measure the impact of the reconfiguration on the transaction throughput of the blockchain, we
measured the throughput during a minute and a half while issuing a reconfiguration. The results are depicted
in Figure 6. The throughput is computed as the number of transactions committed within a transaction
block divided by the time it takes to append this transaction block in the blockchain. In this experiment
the initial configuration contains 15 decider nodes. The reconfiguration triggered at around 32 seconds
adds 5 nodes to these 15 nodes to obtain a new configuration with 20 decider nodes. We observe that the
throughput decreases drastically from 35 transactions per second to 20 transactions per second. This is due

21

I Transaction blocks I Multivalued consensus

I Binary consensus BN Reconfiguration

B Getting signatures B Transaction blocks
80 1 80 1
560 -§60
3 S
S O
3 b
w 2]
= =
w40 1 40
£ E
= =
20 1 20 1 I
0 0
o — o < [T9) e} ~ 00 [T9) o [[ee) o S : g

N
Number of nodes to remove Number of nodes in the initial configuration

(a) Time in seconds to make a decision and to perform (b) Time in seconds to make a decision and to perform
reconfiguration and process 20 transaction blocks when reconfiguration and process 20 transaction blocks when
starting with 12 nodes, depending on the number of nodes removing 1 node, depending on the number of nodes of
we want to remove. the initial configuration.

Figure 5: Evaluation of the reconfiguration and transactions processing when removing nodes.

to the reconfiguration delaying the transaction processing as explained in Section 4.4: transactions must
be handled by the new configuration as soon as the new configuration is installed as transaction blocks
and configuration blocks must be totally ordered. Despite the slow down, the throughput is never null and
recovers quickly after the reconfiguration. As the configuration resulting from the reconfiguration is larger
the throughput of the system remains lower after the reconfiguration than before the reconfiguration.

7 Discussion

In this section, we discuss the independence of our algorithm from the presented consensus algorithm and
the way one can define a configuration.

7.1 Independence from the consensus algorithm

The presented algorithms require a pre-existing reliable multicast abstraction similar to the one by G.
Bracha [3], the partial synchrony assumption, a blockchain like the Red Belly Blockchain and our DNS
service. The last two requirements are common to all implemented public blockchains. One assumption
hidden in the definition of a configuration 1 is the threshold (VI, 27" < Cy) needed to ensure that consensus
can be reached using the algorithms proposed in DBFT [10]. Note that this threshold can be replaced by the
minimal number of correct nodes needed per consensus instance by any Byzantine fault tolerant consensus
algorithm.

In other words, our algorithms rely essentially on the reliable multicast abstraction, the partial synchrony

22

—— Throughput (tx/sec)

w
2
L

w
S
L

)
o]

IS}
S

Reconfiguration

Throughput (tx/s)

-
15}
L

o
L

o 10 20 3 4 5 6 70 8
Time (seconds)

Figure 6: Evolution of the throughput during and after a reconfiguration, in transactions per second. The
first configuration contains 15 decider nodes while the second one contains 20 decider nodes

assumption and some validity-based consensus algorithm. Yet, validity-based consensus algorithms are a
superset of consensus algorithms as formalized in the distributed computing literature. Every algorithm
solving the consensus problem can be adapted into a validity-based consensus algorithm, which would need
exactly the same assumptions and suffer from the same limitations.

7.2 Flexibility with respect to the proposed configurations

We left the definition of the new configurations to future work because it depends on the environment and
the targeted application goals. In particular, in Algorithm 1, we only described how to act if a node requests
a signature for a configuration. Depending on the use-case of the community blockchain, the source of
configurations can be adapted. For a private or consortium blockchain, a system administrator could have
an interface to change the servers used for the consensus (useful when one of them crashes), or to add a
new member of the current configuration. In a public environment, designing a source of configurations
that keeps the blockchain safe for malicious behaviors is much harder. Several proposals have been made
to ensure that a given threshold is met [20, 37], but no deterministic approach can be considered due to the
predictability of such paradigms, which could widen the time frame for attackers to subvert participants to
the consensus.

8 Conclusion

In this paper we proposed the community blockchain model that bridges the gap between public blockchains,
which aim at dedicating all resources to find each block, and consortium blockchains, which restrict the
block decision to a small “elite”. The community blockchain model offers a deterministic solution that
replaces nodes by others through a Byzantine consensus-based reconfiguration while transferring pending
transactions from the old configuration to the new one.

While Byzantine reconfiguration of distributed systems has been studied in the past, the advent of
blockchains has brought new opportunities, which have remained unexplored until now. Consortium
blockchains have not been considered for public use due to their static membership. This is why we be-
lieve community blockchains will open new interesting research challenges in the context of blockchain and
large-scale reconfiguration.

23

Finally, we implemented ComChain, a community blockchain that uses Byzantine reconfiguration to
alternate between different configurations of nodes to decide subsequent blocks. Our ComChain experi-
mentation on a distributed set of physical machines demonstrates the feasibility of using Byzantine recon-
figuration in a blockchain. While latency increases with the number of added nodes, it reduces with the
number of removed nodes. Finally, these experiments show that reconfiguration may affect the throughput
but can proceed at runtime without disrupting the transaction service.

Acknowledgments. This research is in part supported under Australian Research Council Discovery
Projects funding scheme (project number 180104030) entitled “Taipan: A Blockchain with Democratic
Consensus and Validated Contracts” and Australian Research Council Future Fellowship funding scheme
(project number 180100496) entitled “The Red Belly Blockchain: A Scalable Blockchain for Internet of
Things”. Vincent Gramoli is a Future Fellow of the Australian Research Council.

References

[1] Eduardo Alchieri, Fernando Luis Dotti, Odorico Machado Mendizabal, Fernando Pedone. Reconfiguring Parallel State Ma-
chine Replication. SRDS 2017: 104-113.

[2] Alysson Bessani, Jodo Sousa, and Eduardo EP Alchieri, State machine replication for the masses with BFT-SMaRt, Depend-
able Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference on. IEEE, 2014.

[3] Gabriel Bracha, Asynchronous Byzantine agreement protocols. Information & Computation, 75(2):130-143 (1987).

[4] Gabriel Bracha and Sam Toueg, Asynchronous consensus and broadcast protocols, Journal of the ACM, 32(4):824-840
(1985).

[5] Christian Cachin. Architecture of the Hyperledger Blockchain Fabric. Workshop on Distributed Cryptocurrencies and Con-
sensus Ledgers. July 2016.

[6] Miguel Castro, and Barbara Liskov, Practical Byzantine fault tolerance, OSDI, Vol. 99, 1999.

[7] Gregory Chockler, Seth Gilbert, Vincent Gramoli, Peter M. Musial and Alexander A. Shvartsman, Reconfigurable Distributed
Storage for Dynamic Networks, Journal of Parallel and Distributed Computing (JPDC), 69(1):100-116 Elsevier jan 2009

[8] Pierre Civit, Seth Gilbert, Vincent Gramoli. Polygraph: Accountable Byzantine Agreement. 2019. Cryptology ePrint
Archive, Report 2019/587. https://eprint.iacr.org/2019/587

[9] James A. Cowling, Dan R. K. Ports, Barbara Liskov, Raluca Ada Popa, Abhijeet Gaikwad. Census: Location-aware mem-
bership management for large-scale distributed systems, USENIX ATC, 2009.

[10] Tyler Crain, Vincent Gramoli, Mikel Larrea and Michel Raynal. (Leader/Randomization/Signature)-free Byzantine Consen-
sus for Consortium Blockchains, Arxiv Technical Report, https://arxiv.org/pdf/1702.03068.pdf

[11] Tyler Crain, Vincent Gramoli, Mikel Larrea and Michel Raynal. DBFT: Efficient Leaderless Byzantine Consensus and its Ap-
plications to Blockchains, Proceedings of the 17th IEEE International Symposium on Network Computing and Applications,
2018.

[12] Tyler Crain, Vincent Gramoli, Mikel Larrea, Michel Raynal. Blockchain Consensus, ALGOTEL 2017 - 19émes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications, May 2017, Quiberon, France.

[13] Tyler Crain, Chris Natoli, Vincent Gramoli. Evaluating the Red Belly Blockchain. Technical report arXiv 1812.11747, 2018.

[14] Phil Daian, Rafael Pass and Elaine Shi, Snow White: Robustly reconfigurable consensus and applications to provably secure
proofs of stake, Cryptology ePrint Archive, Report 2016/919, 2017.

[15] Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang. BChain: Byzantine Replication with High Throughput and Em-
bedded Reconfiguration, OPODIS, 2014.

24

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
(31]

(32]

(33]

[34]

(35]

[36]

(37]

Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert van Renesse. Bitcoin-NG: A Scalable Blockchain Protocol.
NSDI 2016.

Parinya Ekparinya, Vincent Gramoli, Guillaume Jourjon. Impact of Man-In-The-Middle Attacks on Ethereum. Proceedings
of the 37th IEEE International Symposium on Reliable Distributed Systems (SRDS), 2018.

Parinya Ekparinya, Vincent Gramoli, Guillaume Jourjon. The Attack of the Clones against Proof-of-Authority. Community
Ethereum Development Conference (EDCON) 2019.

M.J. Fischer, N.A. Lynch, and M.S. Paterson, Impossibility of distributed consensus with one faulty process, Journal of the
ACM, 32(2):374-382 (1985)

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos and Nickolai Zeldovich, Algorand: Scaling Byzantine Agree-
ments for Cryptocurrencies, Cryptology ePrint Archive, Report 2017/454, May 2017

Seth Gilbert, Nancy A. Lynch, Alexander A. Shvartsman: Rambo: a robust, reconfigurable atomic memory service for
dynamic networks. Distributed Computing 23(4): 225-272 (2010)

Gregory V. Chockler, Seth Gilbert, Vincent Gramoli, Peter M. Musial, Alexander A. Shvartsman: Reconfigurable distributed
storage for dynamic networks. J. Parallel Distrib. Comput. 69(1): 100-116 (2009)

Vincent Gramoli, Len Bass, Alan Fekete and Daniel Sun, Rollup: Non-Disruptive Rolling Upgrade with Fast Consensus-
Based Dynamic Reconfigurations, IEEE Transactions on Parallel and Distributed Systems (TPDS), 27(9):2711-2724 Sep
2016.

Vincent Gramoli. The Red Belly Blockchain. Invited talk. MIT, MA, USA. June 2017. https://hades.it.usyd.edu.au

Guerraoui, Kuznetsov, Monti, Pavlovic, Seredinschi. AT2: Asynchronous Trustworthy Transfers. Arxiv Technical Report,
https://arxiv.org/pdf/1812.10844.pdf

Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn, Corda: An Introduction, White paper, 2016.

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, Benjamin Reed: ZooKeeper: Wait-free Coordination for Internet-
scale Systems. USENIX Annual Technical Conference 2010.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser and Bryan Ford, Enhancing
bitcoin security and performance with strong consistency via collective signing, CoRR, abs/1602.06997, 2016.

Leslie Lamport, Dahlia Malkhi and Lidong Zhou, Vertical Paxos and Primary-Backup Replication, Proceedings of the 28th
ACM symposium on Principles of distributed computing. ACM, 2009

Leslie Lamport, Dahlia Malkhi and Lidong Zhou. Reconguring a State Machine. SIGACT News 41(1): 63-73 (2010)
Satoshi Nakamoto, Bitcoin: a peer-to-peer electronic cash system. http://www.bitcoin.org (2008)

Chris Natoli and Vincent Gramoli, The balance attack against proof-of-work blockchains: The R3 testbed as an example,
DSN, 2017.

Chris Natoli and Vincent Gramoli, The blockchain anomaly, Proc. 5th IEEE Int’l Symposium on Network Computing and
Applications (NCA’16), IEEE ComputerPress, pp. 310-317 (2016)

Rafael Pass and Elaine Shi, Hybrid Consensus: Efficient Consensus in the Permissionless Model, Cryptology ePrint Archive,
Report 2016/917, 2016. http://eprint.iacr.org/2016/917.pdf

Rodrigo Rodrigues, Barbara Liskov, Member, IEEE, Kathryn Chen, Moses Liskov and David Schultz, Automatic recon-
figuration for large-scale reliable storage systems, /EEE Transactions on Dependable and Secure Computing, 9.2 (2010):
145-158.

Wood Gavin, Ethereum: A secure decentralized generalized transaction ledger. White paper (2015)

Jiangshan Yu, David Kozhaya, Jrmie Decouchant and Paulo Esteves-Verissimo, RepuCoin: Your reputation is your power,
unpublished draft.

25

(38]

(39]

[40]

[41]

[42]

[43]

Jepsen, Tendermint 0.10.2. Unknown author. White paper, Sept. 2017. https://jepsen.io/analyses

Jodo Sousa and Alysson Bessani and Marko Vukoli¢, A Byzantine Fault-Tolerant Ordering Service for the Hyperledger Fab-
ric Blockchain Platform. Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference
on. IEEE, 2018. arXiv:1709.06921.

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

Guillaume Vizier and Vincent Gramoli, ComChain: Bridging the Gap Between Public and Consortium Blockchains. IEEE
Blockchain, DOI:10.1109/Cybermatics_2018.2018.00249 pp.1449-1474 (2018)

Tendermint documentation. https://tendermint.com/docs/tendermint-core/using-tendermint.html#
adding-a-validator, Accessed 30-05-2019

EOS documentation. https://github.com/E0SI0/Documentation/blob/master/TechnicalWhitePaper .md#
consensus-algorithm-bft-dpos, Accessed 30-05-2019.

26

