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Abstract. Collecting anonymous opinions has applications from
whistleblowing to complex voting, where participants rank candidates
by order of preferences. Unfortunately, as far as we know there is no
efficient distributed solution to this problem. Previous solutions either
require trusted third parties, are inefficient or sacrifice anonymity.

In this paper, we propose a distributed solution called the Anonymised
Vector Consensus Protocol (AVCP) that reduces the problem of agreeing
on a set of anonymous votes to the binary Byzantine consensus problem.
The key idea to preserve anonymity of voters—despite some of them act-
ing maliciously—is to detect double votes through traceable ring signa-
tures. AVCP is resilient-optimal as it tolerates up to a third of Byzantine
participants. We prove our algorithm correct and show that it preserves
anonymity with at most a linear communication overhead and constant
message overhead when compared to a recent consensus baseline. Finally,
we demonstrate empirically that the protocol is practical by deploying
it on 100 machines geo-distributed in three continents: America, Asia
and Europe. Anonymous decisions are reached within 10 seconds with a
conservative choice of traceable ring signatures.

1 Introduction and related work

Consider a distributed survey where a group of mutually distrusting participants
wish to exchange their opinions about some issue. For example, participants may
wish to communicate over the Internet to rank candidates in order of preference
to change the governance of a blockchain. Without making additional trust as-
sumptions [1,19,39], one promising approach is to run a Byzantine consensus
algorithm [41], or more generally a vector consensus algorithm [17,24,47] to
allow for arbitrary votes. In vector consensus, a set of participants decide on
a common vector of values, each value being proposed by one process. Unlike
interactive consistency [41], a protocol solving vector consensus can be executed
without fully synchronous communication channels, and as such is preferable for
use over the Internet. Unfortunately, vector consensus protocols tie each partic-
ipant’s opinion to its identity to ensure one opinion is not overrepresented in



the decision and to avoid double voting. There is thus an inherent difficulty in
solving vector consensus while preserving anonymity.

In this paper, we introduce the anonymity-preserving vector consensus prob-
lem that prevents an adversary from discovering the identity of non-faulty par-
ticipants that propose values in the consensus and we introduce a solution called
Anonymised Vector Consensus Protocol (AVCP). To prevent the leader in some
Byzantine consensus algorithms [13] from influencing the outcome of the vote
by discarding proposals, AVCP reduces the problem to binary consensus that is
executed without the need for a traditional leader [18].

We provide a mechanism to prevent Byzantine processes from double voting
whilst also decoupling their ballots from their identity. In particular, we adopt
traceable ring signatures [30,36], which enable participants to anonymously prove
their membership in a set of participants, exposing a signer’s identity if and
only if they sign two different votes. This can disincentivise participants from
proposing multiple votes to the consensus. Alternatively, we could use linkable
ring signatures [42], but would not ensure that Byzantine processes are held
accountable when double-signing. We could also have used blind signatures [12,
14], but this would have required an additional trusted authority.

We also identify interesting conditions to ensure anonymous communication.
Importantly, participants must propagate their signatures anonymously to hide
their identity. To this end, we could construct anonymous channels directly. How-
ever, these protocols either require additional trusted parties, are not robust or
incur O(n) message delays to terminate [15,33,34,38]. Thus, we assume access to
anonymous channels, such as through publicly-deployed [23,58] networks which
often require sustained network observation or large amounts of resources to de-
anonymise with high probability [32,45]. Anonymity is ensured then as processes
do not reveal their identity via ring signatures and communicate over anonymous
channels. If correlation-based attacks on certain anonymous networks are deemed
viable [43] and for efficiency’s sake, processes can anonymously broadcast their
proposal and then continue the protocol execution over regular channels. How-
ever, anonymous channels alone cannot ensure anonymity when combined with
regular channels as an adversary may infer identities through latency [2] and
message transmission ordering [49]. For example, an adversary may relate late
message arrivals from a single process over both channels to deduce the identity
of a slow participant. This is why, to ensure anonymity, the timing and order
of messages exchanged over anonymous channels should be statistically inde-
pendent (or computationally indistinguishable with a computational adversary)
from that of those exchanged over regular channels. In practice, one may at-
tempt to ensure that there is a low correlation by ensuring that message delays
over anonymous and regular channels are sufficiently randomised.

We construct our solution iteratively first by defining the anonymity-
preserving all-to-all reliable broadcast problem that may be of independent in-
terest. Here, anonymity and comparable properties to reliable broadcast [7] with
n broadcasters are ensured. By constructing a solution to this problem with
Bracha’s classical reliable broadcast [5], AVCP can terminate after three regular



and one anonymous message delay. With this approach, our experimental results
are promising—with 100 geo-distributed nodes, AVCP generally terminates in
less than ten seconds. We remark that, to ensure confidentiality of proposals
until after termination, threshold encryption [21,53], in which a minimum set of
participants must cooperate to decrypt any message, can be used at the cost of
an additional message delay.

Related constructions. We consider techniques without additional trusted par-
ties. Homomorphic tallying [19] encodes opinions as values that are summed in
encrypted form prior to decryption. Such schemes that rely on a public bul-
letin board for posting votes [35] could use Byzantine consensus [41] and make
timing assumptions on vote submission to perform an election. Unfortunately,
homomorphic tallying is impractical when the pool of candidates is large and
impossible when arbitrary. Nevertheless, using a multiplicative homomorphic
scheme [26] requires exponential work in the amount of candidates at tallying
time, and additive homomorphic encryption like Paillier’s scheme [48] incurs
large (RSA-size) parameters and more costly operations. Fully homomorphic
encryption [8,31] is suitable in theory, but at present is untenable for computing
complex circuits efficiently. Self-tallying schemes [35], which use homomorphic
tallying, are not appropriate as at some point all participants must be cor-
rect, which is untenable with arbitrary (Byzantine) behaviour. Constructions
involving mix-nets [16] allow for arbitrary ballot structure. However, decryption
mix-nets are not a priori robust to a single Byzantine or crash failure [16], and re-
encryption mix-nets which use proofs of shuffle are generally slow in tallying [1].
With arbitrary encryptions, larger elections can take minutes to hours [40] to
tally. Even with precomputation, O(t) processes still need to perform proofs of
shuffle [46] in sequence, which incurs untenable latency even without process
faults. With faults and/or asynchrony, we could run O(t) consensus instances in
sequence but at an additional cost. DC-nets and subsequent variations [15, 34]
are not sufficiently robust and generally require O(n) message delays for an
all-to-all broadcast. On multi-party computation, general techniques like Yao’s
garbled-circuits [56] incur untenable overhead given enough complexity in the
structure of ballots. Private-set intersection [28,57] can be efficient for elections
that require unanimous agreement, but do not generalise arbitrarily.

Roadmap. The paper is structured as follows. Section 2 provides preliminary
definitions and specifies the model. Section 3 presents protocols and defini-
tions required for our consensus protocol. Section 4 presents our anonymity-
preserving vector consensus solution. Section 5 benchmarks AVCP on up to 100
geo-distributed located on three continents. To conclude, Section 6 discusses the
use of anonymous and regular channels in practice and future work.

2 Model

We assume the existence of a set of processes P = {p1,...,p,} (where |P| =n,

and the ith process is p;), an adversary A who corrupts ¢ < % processes in



P, and a trusted dealer D who generates the initial state of each process.
For simplicity of exposition, we assume that cryptographic primitives are
unbreakable. With concrete primitives that provide computational guarantees,
each party could be modelled as being able to execute a number of instructions
each message step bounded by a polynomial in a security parameter k& [11]. In
this case, the transformation of our proofs presented in the companion technical
report [9] is straight forward given the hardness assumptions required by the
underlying cryptographic schemes.

2.1 Network

We assume that P consists of asynchronous, sequential processes that commu-
nicate over reliable, point-to-point channels in an asynchronous network. An
asynchronous process is one that executes instructions at its own pace. An asyn-
chronous network is one where message delays are unbounded. A reliable network
is such that any message sent by a correct process will eventually be delivered
by the intended recipient. We assume that processes can also communicate using
reliable one-way anonymous channels, which we soon describe.

Each process is equipped with the primitive “send M to p;”, which sends
the message M (possibly a tuple) to process p; € P. For simplicity, we assume
that a process can send a message to itself. A process receives a message M by
invoking the primitive “receive M”. Each process may invoke “broadcast M7,
which is short-hand for “for each p; € P do send M to p; end for”. Analo-
gously, processes may invoke “anon_send M to p;” and “anon_broadcast M” over
anonymous channels.

Since reaching consensus deterministically is impossible in failure-prone
asynchronous message-passing systems [27], we assume that partial synchrony
holds among processes in P in Section 4. That is, we assume there exists a point
in time in protocol execution, the global stabilisation time (GST), unknown to
all processes, after which the speed of each process and all message transfer
delays are upper bounded by a finite constant [25].

2.2 Adversary

We assume that the adversary A schedules message delivery over the regular
channels, restricted to the assumptions of our model (e.g., the reliability of
the channels). For each send call made, A determines when the corresponding
receive call is invoked. A portion of processes—exactly ¢ < % members of
P—are initially corrupted by A and may exhibit Byzantine faults [41] over
the lifetime of a protocol’s execution. That is, they may deviate from the
predefined protocol in an arbitrary way. We assume A can see all computations
and messages sent and received by corrupted processes. A non-faulty process is
one that is not corrupted by A and therefore follows the prescribed protocol. A
can only observe anon_send and anon_receive calls made by corrupted processes.



A cannot see the (local) computations that non-faulty processes perform. We
do not restrict the amount or speed of computation that A can perform.

2.3 Anonymity assumption

Consider the following experiment. Suppose that p; € P is non-faulty and in-
vokes “anon_send m to p;”, where p; € P is possibly corrupted, and p; invokes
anon_receive with respect to m. No process can directly invoke send or invoke
receive in response to a send call at any time. p; is allowed to use anon_send to
message corrupted processes if it is corrupted, and can invoke anon_recv with
respect to messages sent by corrupted processes. Each process is unable to make
oracle calls (described below), but is allowed to perform an arbitrary number
of local computations. p; then outputs a single guess, g € {1,...,n} as to the
identity of p;. Then for any run of the experiment, Pr(i = g) < nit.

As A can corrupt ¢ processes, the anonymity set [20], i.e., the set of processes
p; is indistinguishable from, comprises n — ¢t non-faulty processes. Our definition
captures the anonymity of the anonymous channels, but does not consider the
effects of regular message passing and timing on anonymity. As such, we can
use techniques to establish anonymous channels in practice with varying levels
of anonymity with these factors considered.

2.4 'Traceable ring signatures

Informally, a ring signature [30,51] proves that a signer has knowledge of a private
key corresponding to one of many public keys of their choice without revealing
the corresponding public key. Hereafter, we consider traceable ring signatures (or
TRSs), which are ring signatures that expose the identity of a signer who signs
two different messages. To increase flexibility, we can consider traceability with
respect to a particular string called an issue [55], allowing signers to maintain
anonymity if they sign multiple times, provided they do so each time with respect
to a different issue.

‘We now present relevant definitions of the ring signatures which are analogous
to those of Fujisaki and Suzuki [30]. Let ID € {0,1}*, which we denote as a tag.
We assume that all processes may query an idealised distributed oracle, which
implements the following four operations:

1. o < Sign(i, ID, m), which takes the integer i € {1,...,n}, tag ID € {0,1}*
and message m € {0,1}*, and outputs the signature o € {0, 1}*. We restrict
Sign such that only process p; € P may invoke Sign with first argument i.

2. b «+ VerifySig(ID,m, o), which takes the tag ID, message m € {0,1}*, and
signature o € {0,1}*, and outputs a bit b € {0,1}. All parties may query
VerifySig.

3. out + Trace(ID,m,o,m’,o’), which takes the tag ID € {0,1}*, messages
m,m’ € {0,1}* and signatures o,0’ € {0,1}*, and outputs out € {0,1}* U



{1,...,n} (possibly corresponding to a process p;). All parties may query

Trace.
4. z + FindIndex(ID,m, o) takes a tag ID € {0,1}*, a message m € {0,1}*,
and a signature o € {0,1}*, and outputs a value z € {1,...,n}. FindIndex

may not be called by any party, and exists only for protocol definitions.
The distributed oracle satisfies the following relations:

— VerifySig(ID, m,0) = 1 <= 3 p; € P which invoked o < Sign (i, ID, m).
— Trace is as below <= o « Sign(i, ID,m) and ¢’ < Sign(i’, ID, m’) where:

“indep” i i # 7/,
Trace(ID,m,o,m’',c') = { “linked” else if m = m’,

i otherwise (i =i’ Am # m/).

— If adversary D is given an arbitrary set of signatures S and must identify
the signer p; of a signature o € S by guessing i, Pr(i = g) < ﬁ for any D.

The concrete scheme proposed by Fujisaki and Suzuki [30] computationally
satisfies these properties in the random oracle model [3] provided the Decisional
Diffie-Hellman problem is intractable. In our protocols, where the ring comprises
the n processes of P, the resulting signatures are of size O(kn), where k is the
security parameter. To simplify the presentation, we assume that its properties
hold unconditionally in the following.

3 Communication primitives

3.1 Traceable broadcast

Suppose a process p wishes to anonymously send a message to a given set of
processes P. By invoking anonymous communication channels, p can achieve
this, but processes in P\ {p} are unable to verify that p resides in P, and so
cannot meaningfully participate in the protocol execution. By using (traceable)
ring signatures, p can verify its membership in P over anonymous channels
without revealing its identity. To this end, we outline a simple mechanism to
replace the invocation of send and receive primitives (over regular channels) with
calls to ring signature and anonymous messaging primitives (namely anon_send
and anon_receive).

Let (ID, TAG,label,m) be a tuple for which p; € P has invoked send with
respect to. Instead of invoking send, p; first calls o « Sign(i,T,m), where T
is a tag uniquely defined by TAG and label. Then, p; invokes anon_send M,
where M = (ID, TAG, label,m,¢). Upon an anon_receive M call by p; € P, p;
verifies that VerifySig(T,m,0c) = 1 and that they have not previously received
(m/,¢") such that Trace(T,m,o,m’,0’) # “indep”. Given this check passes, p;
invokes receive (ID, TAG, label,m). In our protocols, processes always broadcast
messages, so the transformation is used with respect to broadcast calls.



By the properties of the anonymous channels and the signatures, it follows
that anonymity as defined in the previous section holds with additional adver-
sarial access to the distributed oracles. We present the proof in the companion
technical report [9]. Hereafter, we assume that calls to primitives send and receive
are handled by the procedure presented in this subsection unless explicitly stated
otherwise.

3.2 Binary consensus

Broadly, the binary consensus problem involves a set of processes reaching an
agreement on a binary value b € {0, 1}. We first recall the definitions that define
the binary Byzantine consensus (BBC) problem as stated in [18]. In the following,
we assume that every non-faulty process proposes a value, and remark that only
the values in the set {0, 1} can be decided by a non-faulty process.

1. BBC-Termination: Every non-faulty process eventually decides on a value.

2. BBC-Agreement: No two non-faulty processes decide on different values.

3. BBC-Validity: If all non-faulty processes propose the same value, no other
value can be decided.

For simplicity, we present the safe, non-terminating variant of the binary con-
sensus routine from [18] in Algorithm 1. As assumed in the model (Section 2),
the terminating variant relies on partial synchrony between processes in P. The
protocols execute in asynchronous rounds.

State. A process keeps track of a binary value est € {0, 1}, corresponding to a
process’ current estimate of the decided value, arrays bin_values[l..], in which
each element is a set S C {0,1}, a round number r (initialised to 0), an auxiliary
binary value b, and lists of (binary) values values,, r = 1,2,..., each of which
are initially empty.

Messages. Messages of the form (EST,r,b) and (AUX,r,b), where r > 1 and b €
{0, 1}, are sent and processed by non-faulty processes. Note that we have omitted
the dependency on a label label and identifier ID for simplicity of exposition.

BV-broadcast. To exchange FEST messages, the protocol relies on an all-to-
all communication abstraction, BV-broadcast [44], which is presented in Al-
gorithm 1. When a process adds a value v € {0,1} to its array bin_values|r] for
some r > 1, we say that v was BV-delivered.

Functions. Let b € {0,1}. In addition to BV-broadcast and the communication
primitives in our model, a process can invoke bin_propose(b) to begin executing
an instance of binary consensus with input b, and decide(b) to decide the value
b. In a given instance of binary consensus, these two functions may be called
exactly once. In addition, the function list.append(v) appends the value v to the
list list.



Algorithm 1 Safe binary consensus routine

1: bin_propose(v):
2 est < v; r < 0;
3 repeat:
4: r<r+1;
5: BV-broadcast(EST, r, est)
6: wait until (bin_values[r] # ()
7 broadcast (AUX, r, bin_values[r])
8: wait until (|values,| > n —t) A (val € bin_values[r] for all val € values,)
9: b+ r (mod 2)
10: if val = w for all val € values, where w € {0,1} then
11: est < w;
12: if w =0 then
13: decide(v) if not yet invoked decide()
14: else
15: est < b

16: upon intial receipt of (AUX,r,b) for some b € {0,1} from process p;
17:  wvalues,.append(b)

18: BV-broadcast(EST, r,v;):

19:  broadcast (EST,r,v;)

20: upon receipt of (EST,r,v)

21:  if (EST,r,v) received from (¢ 4+ 1) processes and not yet broadcast then
22: broadcast (EST,r,v)

23:  if (EST,r,v) received from (2t 4+ 1) processes then

24: bin_values(r] < bin_values[r] U {v}

To summarise Algorithm 1, the BV-broadcast component ensures that only a
value proposed by a correct process may be decided, and the auxiliary broadcast
component ensures that enough processes have received a potentially decidable
value to ensure agreement. The interested reader can verify the correctness of
the protocol and read a thorough description of how it operates in [18], where
the details of the corresponding terminating protocol also reside.

3.3 Anonymity-preserving all-to-all reliable broadcast

To reach eventual agreement in the presence of Byzantine processes without
revealing who proposes what, we introduce the anonymity-preserving all-to-all
reliable broadcast problem that preserves the anonymity of each honest sender
which is reliably broadcasting. In this primitive, all processes are assumed to
(anonymously) broadcast a message, and all processes deliver messages over
time. It ensures that all honest processes always receive the same message from
one (possibly faulty) sender while hiding the identity of any non-faulty sender.

Let ID € {0,1}* be an identifier, a string that uniquely identifies an in-
stance of anonymity-preserving all-to-all reliable broadcast, hereafter referred



to as AARB-broadcast. Let m be a message, and o be the output of the call
Sign(i,T,m) for some i € {1,...,n}, where T = f(ID,label) for some func-
tion f as in traceable broadcast. Each process is equipped with two operations,
“AARBP” and “AARB-deliver”. AARBP[ID](m) is invoked once with respect to
ID and any message m, denoting the beginning of a process’ execution of AARBP
with respect to ID. AARB-deliver[I D](m, o) is invoked between n—t and n times
over the protocol’s execution. When a process invokes AARB-deliver[ID](m, o),
they are said to “AARB-deliver” (m, o) with respect to ID. Then, given t < %,
we define a protocol that implements AARB-broadcast with respect to ID as
satisfying the following siz properties:

1. AARB-Signing: If a non-faulty process p; AARB-delivers a message with
respect to ID, then it must be of the form (m, o), where a process p; € P
invoked Sign(i, T, m) and obtained o as output.

2. AARB-Validity: Suppose that a non-faulty process AARB-delivers (m, o)
with respect to ID. Let ¢ = FindIndex(T,m,o) denote the output of an
idealised call to FindIndex. Then if p; is non-faulty, p; must have anonymously
broadcast (m, o).

3. AARB-Unicity: Consider any point in time in which a non-faulty pro-
cess p has AARB-delivered more than one tuple with respect to ID. Let
delivered = {(my,01),...,(my,07)}, where |delivered| = I, denote the set of
these tuples. For each ¢ € {1,...,l}, let out; = FindIndex(T, m;,o;) denote
the output of an idealised call to FindIndex. Then for all distinct pairs of
tuples {(m, 0;), (m;,0,)}, out; # out;.

4. AARB-Termination-1: If a process p; is non-faulty and invokes
AARBP[ID](m), all the non-faulty processes eventually AARB-deliver (m, o)
with respect to ID, where o is the output of the call Sign(i, T, m).

5. AARB-Termination-2: If a non-faulty process AARB-delivers (m, o) with
respect to ID, then all the non-faulty processes eventually AARB-deliver
(m, o) with respect to ID.

Firstly, we require AARB-Signing to ensure that the other properties are mean-
ingful. Since messages are anonymously broadcast, properties refer to the index
of the signing process determined by an idealised call to FindIndex. In spirit,
AARB-Validity ensures if a non-faulty process AARB-delivers a message that
was signed by a non-faulty process p;, then p; must have invoked AARBP. Sim-
ilarly, AARB-Unicity ensures that a non-faulty process will AARB-deliver at
most one message signed by each process. We note that AARB-Termination-1 is
insufficient for consensus: without AARB-Termination-2, different processes may
AARB-deliver different messages produced by the same process if it is faulty, as
in the two-step algorithm implementing no-duplicity broadcast [6,50]. Finally,
we state the anonymity property:

6. AARB-Anonymity: Suppose that non-faulty process p; invokes
AARBP[ID](m) for some m and a given ID, and has previously invoked
an arbitrary number of AARBP[ID;](m;) calls where ID # ID; for all such
Jj. Suppose that an adversary A is required to output a guess g € {1,...,n},



corresponding to the identity of p; after performing an arbitrary number of
computations, allowed oracle calls and invocations of networking primitives.

Then for any A and run, Pr(i = g) < —-.

n—t

Informally, AARB-Anonymity guarantees that the source of an anonymously
broadcast message by a non-faulty process is unknown to the adversary, in that
it is indistinguishable from n — ¢ (non-faulty) processes. AARBP can be im-
plemented by composing n instances of Bracha’s reliable broadcast algorithm,
which we describe and prove correct in the companion technical report [9].

4 Anonymity-preserving vector consensus

In this section, we introduce the anonymity-preserving vector consensus prob-
lem and present and discuss the protocol Anonymised Vector Consensus Proto-
col (AVCP) that solves it. The anonymity-preserving vector consensus problem
brings anonymity to the vector consensus problem [24] where non-faulty pro-
cesses reach an agreement upon a vector containing at least n — ¢ proposed
values. More precisely, anonymised vector consensus asserts that the identity of
a process who proposes must be indistinguishable from that of all non-faulty
processes. As in AARBP, instances of AVCP are identified uniquely by a given
value ID. Each process is equipped with two operations. Firstly, “AVCP[ID](m)”
begins execution of an instance of AVCP with respect to ID and proposal m. Sec-
ondly, “AVC-decide[ID](V')” signals the output of V' from the instance of AVCP
identified by ID, and is invoked exactly once per identifier. We define a protocol
that solves anonymity-preserving vector consensus with respect to these opera-
tions as satisfying the following four properties. Firstly, we require an anonymity
property, defined analogously to that of AARB-broadcast:

1. AVC-Anonymity: Suppose that non-faulty process p; invokes
AVCP[ID](m) for some m and a given ID, and has previously invoked
an arbitrary number of AVCP[ID;](m;) calls where ID # ID; for all such j.
Suppose that an adversary A is required to output a guess g € {1,...,n},
corresponding to the identity of p; after performing an arbitrary number of
computations, allowed oracle calls and invocations of networking primitives.
Then for any A and run, Pr(i = g) < —-.

n—t

It also requires the original agreement and termination properties of vector con-
sensus:

2. AVC-Agreement: All non-faulty processes that invoke AVC-decide[ID](V)
do so with respect to the same vector V for a given ID.

3. AVC-Termination: Every non-faulty process eventually invokes
AVC-decide[ID](V) for some vector V and a given ID.

It also requires a validity property that depends on a pre-determined, determinis-
tic validity predicate valid() [10,18] which we assume is common to all processes.
We assume that all non-faulty processes propose a value that satisfies valid().

10



4. AVC-Validity: Consider each non-faulty process that invokes
AVC-decide[ID](V) for some V and a given ID. Each value v € V
must satisfy valid(), and |V| > n — t. Further, at least |V| — ¢ values
correspond to the proposals of distinct non-faulty processes.

4.1 AVCP, the Anonymised Vector Consensus Protocol

We present a reduction to binary consensus which may converge in four message
steps, as in the reduction to binary consensus of Democratic Byzantine Fault
Tolerance (DBFT) [18], at least one of which must be performed over anony-
mous channels. We present the proof of correctness in the companion technical
report [9]. We note that comparable problems [22], including agreement on a core
set over an asynchronous network [4], rely on such a reduction but with a prob-
abilistic solution. As in DBFT, we solve consensus deterministically by reliably
broadcasting proposals which are then decided upon using n instances of binary
consensus. The protocol is divided into two components. Firstly, the reduction
component (Algorithm 2) reduces anonymity-preserving vector consensus to bi-
nary consensus. Here, one instance of AARBP and n instances of binary consen-
sus are executed. But, since proposals are made anonymously, processes cannot
associate proposals with binary consensus instances a priori. Consequently, pro-
cesses start with n unlabelled binary consensus instances, and label them over
time with the hash digest of proposals they deliver (of the form h € {0,1}*). To
cope with messages sent and received in unlabelled binary consensus instances,
we require a handler component (Algorithm 3) that replaces function calls made
in binary consensus instances.

Functions. In addition to the communication primitives detailed in Section 2
and the two primitives “AVCP” and “AVC-decide”, the following primitives may
be called:

— “inst.bin_propose(v)”, where inst is an instance of binary consensus and
v € {0, 1}, which begins execution of inst with initial value v.

— “AARBP” and “AARB-deliver”, as in Section 3.

— “valid()” as described above.

— “m.keys()” (resp. “m.values()”), which returns the keys (resp. values) of a
map m.

— “item.key()”, which returns the key of item in a map m which is determined
by context.

— “s.pop()”, which removes and returns a value from set s.

— “H(v)”, a cryptographic hash function which maps an element v € {0,1}*
to h € {0,1}*.

State. Each process tracks the following variables:

— ID € {0,1}*, a common identifier for a given instance of AVCP.

11



— proposals|], which maps labels of the form [ € {0,1}* to AARB-delivered
messages of the form (m,o) € ({0,1}*,{0,1}*) that may be decided, and is
initially empty.

— decision_count, tracking the number of binary consensus instances for which
a decision has been reached, initialised to 0.

— decided_ones, the set of proposals for which 1 was decided in the correspond-
ing binary consensus instance, initialised to ().

— labelled[], which maps labels, which are the hash digest h € {0,1}* of AARB-
delivered proposals, to binary consensus instances, and is initially empty.

— wunlabelled, a set of binary consensus instances with no current label, which
is initially of cardinality n.

— ones[][], which maps two keys, EST and AUX, to maps with integer keys
r > 1 which map to a set of labels, all of which are initially empty.

— counts[][], which maps two keys, EST and AUX, to maps with integer keys
r > 1 which map to an integer n € {0,...,n}, all of which are initialised to
0.

Messages. In addition to messages propagated in AARBP, non-faulty pro-
cesses process messages of the form (ID,TAG,r, label,b), where TAG € {EST,
AUX}, r > 1, label € {0,1}* and b € {0,1}. A process buffers a message
(ID,TAG, r,label,b) until label labels an instance of binary consensus inst, at
which point the message is considered receipt in inst. The handler, described
below, ensures that all messages sent by non-faulty processes eventually corre-
spond to a label in their set of labelled consensus instances (i.e., contained in
labelled.keys()). Similarly, a non-faulty process can only broadcast such a mes-
sage after labelling the corresponding instance of binary consensus. Processes
also process messages of the form (ID,TAG,r,ones), where TAG € { EST_-ONES,
AUX_ONES}, r > 1, and ones is a set of strings corresponding to binary con-
sensus instance labels.

Reduction. In the reduction, presented in Algorithm 2, n (initially unlabelled)
instances of binary consensus are used, each corresponding to a value that one
process in P may propose. Each (non-faulty) process invokes AARBP with re-
spect to ID and their value m’ (line 2), anonymously broadcasting (m’, ¢’) inside
the AARBP instance. On AARB-delivery of some message (m, o), an unlabelled
instance of binary consensus is deposited into labelled, whose key (label) is set to
H(m || o) (line 10). Proposals that fulfil valid() are stored in proposals (line 12),
and inst.bin_propose(1) is invoked with respect to the newly labelled instance
inst = labelled[H (m || o)] if not yet done (line 13). Upon termination of each in-
stance (line 14), provided 1 was decided, the corresponding proposal is added to
decided_ones (line 16). For either decision value, decision_count is incremented
(line 17). Once 1 has been decided in n — t instances of binary consensus, pro-
cesses will propose 0 in all instances that they have not yet proposed in (line 6).
Note that upon AARB-delivery of valid messages after this point, bin_propose(1)
is not invoked at line 13. Upon the termination of all n instances of binary con-
sensus (after line 7), all non-faulty processes decide their set of values for which
1 was decided in the corresponding instance of binary consensus (line 8).
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Algorithm 2 AVCP (1 of 2): Reduction to binary consensus
1: AVCP[ID](m'):

2: AARBP[]D] (m') > anonymised reliable broadcast of proposal
3: wait until |decided,ones| >n—t > wait until n — t instances terminate with 1
4:  for each inst € unlabelled U labelled.values() such that

5:  inst.bin_propose() not yet invoked do

6: Invoke inst.bin,propose(O) > propose 0 in all binary consensus not yet invoked
7: wait until decision_count =n > wait until all n instances of binary consensus terminate
8:  AVC-decide[ID](decided_ones)

9: upon invocation of AARB-deliver[ID](m, o)
10:  labelled[H(m || 0)] < unlabelled.pop()

11: if vaIid(m7 0') then > deterministic, common validity function
12: proposals[H(m || 0)] < (m, o)
13: Invoke labelled[H (m || o)].bin_propose(1) if not yet invoked

14: upon inst deciding a value v € {0, 1}, where inst € labelled.values() U unlabelled

15: if v = 1 then > store proposals for which 1 was decided in the corresponding binary consensus
16: decided _ones < decided_ones U {proposals|inst.key()]}
17:  decision_count < deciston_count + 1

Handler. As proposals are anonymously broadcast, binary consensus instances
cannot be associated with process identifiers a priori, and so are labelled by
A ARB-delivered messages. Thus, we require the handler, which overrides two of
the three broadcast calls in the non-terminating variant of the binary consensus
of [18] (Algorithm 1).

We now describe the handler (Algorithm 3). Let inst be an instance of binary
consensus. On calling inst.bin_propose(b) (b € {0,1}) (and at the beginning
of each round r > 1), processes invoke BV-broadcast (line 5 of Algorithm 1),
immediately calling “broadcast (ID,EST,r, label,b)” (line 19 of Algorithm 1). If
b=1, (ID,EST,r,label, 1) is broadcast, and label is added to the set ones[EST][r]
(line 21). Note that, given AARB-Termination-1, all messages sent by non-faulty
processes of the form (ID,EST,r,label,1) will be deposited in an instance inst
labelled by label. Then, as the binary consensus routine terminates when all
non-faulty processes propose the same value, all processes will decide the value
1 in n — ¢ instances of binary consensus (i.e., will pass line 3), after which they
execute bin_propose(0) in the remaining instances of binary consensus.

Since these instances may not be labelled when a process wishes to broadcast
a value of the form (ID,EST, r, label,0), we defer their broadcast until “broadcast
(ID,EST,r,label,b)” is called in all n instances of binary consensus. At this point
(line 23), (ID,EST-ONES, r, ones[EST][r]) is broadcast (line 24). A message of
the form (ID,EST-ONES,r, ones) is interpreted as the receipt of zeros in all
instances not labelled by elements in ones (at lines 38 and 40). This can only
be done once all elements of ones label instances of binary consensus (i.e., after
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Algorithm 3 AVCP (2 of 2): Handler of Algorithm 1

18: upon “broadcast (ID,EST,r, label,b)” in inst € labelled.values() U unlabelled
19:  if b =1 then

20: broadcast (ID,EST,r, label, b)

21: ones[EST[r] < ones[EST|[r] U {inst.key()}

22:  counts[ESTI[r] < counts[EST|[r] + 1

23:  if counts[EST)[r] = n A |ones[EST][r]| < n then

24: broadcast (ID,EST-ONES, r,ones[EST][r])

25: upon “broadcast (ID,AUX,r, label,b)” in inst € labelled.values() U unlabelled
26: if b =1 then

27: broadcast (ID,AUX, r, label,b)

28: ones[AUX][r] < ones[AUX][r] U {inst.key()}

29:  counts[AUX][r] < counts[AUX][r] + 1

30:  if counts[AUX][r] =n A |ones[AUX][r]| < n then

31: broadcast (ID,AUX_ONES,r,ones[AUX][r])

32: upon receipt of (ID,TAG,r,ones) s.t. TAG € {EST_-ONES, AUX_ONES}
33:  wait until one € labelled.keys() Yone € ones

34: if TAG = EST_ONES then

35: TEMP « EST

36: else TEMP < AUX

37:  for each [ € labelled.keys() such that | ¢ ones do

38: deliver (ID,TEMP,r,1,0) in labelled[l]
39: for each inst € unlabelled do
40: deliver (ID,TEMP,r, L,0) in inst

line 33). Note that if |ones[EST][r] = n|, then there are no zeroes to be processed
by receiving processes, and so the broadcast at line 24 can be skipped.

Handling “broadcast (ID,AUX,r,label,b)” calls (line 7 of Algorithm 1) is
identical to the handling of initial “broadcast (ID,EST,r, label,b)” calls. Note
that the third broadcast in the original algorithm, where (ID,EST,r, label,b) is
broadcast upon receipt from ¢ + 1 processes if not yet done before (line 21 of
Algorithm 1 (BV-Broadcast)), can only occur once the corresponding instance
of binary consensus is labelled. Thus, it does not need to be handled. From here,
we can see that messages in the handler are processed as if n instances of the
original binary consensus algorithm were executing.

Table 1: Comparing the complexity of AVCP and DBFT [18] after GST [25]

Complexity AVCP DBFT
Best-case message complexity O(n?) O(n?)
Worst-case message complexity O(tn?) O(tn?)
Best-case complexity O((S + ¢c)n?) O(n?)
Worst-case bit complexity O((S + ¢)tn?3) O(tn?)
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4.2 Complexity and optimizations

Let k be a security parameter, S the size of a signature and c the size of a message
digest. In Table 1, we compare the message and communication complexities
of AVCP against DBFT [18], which, as written, can be easily altered to solve
vector consensus. We assume that AVCP is invoking the terminating variant
of the binary consensus of [18]. When considering complexity, we only count
messages in the binary consensus routines once the global stabilisation time
(GST) has been reached [25]. Both best-free and worst-case message complexity
are identical between the two protocols. We remark that there exist runs of AVCP
where processes are faulty which has the best-case message complexity O(n?),
such as when a process has crashed. AVCP mainly incurs greater communication
complexity proportional to the size of the signatures, which can vary from size
O(k) [36,54] to O(kn) [29]. If processes make a single anonymous broadcast
per run, the best-case and worst-case bit complexities of AVCP are lowered to
O(Sn? + cn3) and O(Sn? + ctn?).

As is done in DBFT [18], we can combine the anonymity-preserving all-to-
all reliable broadcast of a message m and the proposal of the binary value 1
in the first round of a binary consensus instance. To this end, a process may
skip the BV-broadcast step in round 1, which may allow AVCP to converge
in four message steps, at least one of which must be anonymous. It may be
useful to invoke “broadcast TAG[r](b)”, where TAG € {EST,AUX} (lines 20 and
27) when the instance of binary consensus is labelled, rather than simply when
b =1 (i.e., the condition preceding these calls). Since it may take some time
for all n instances of binary consensus to synchronise, doing this may speed up
convergence in the “faster” instances.

5 Experiments

In order to evaluate the practicality of our solutions, we implemented our dis-
tributed protocols and deployed them on Amazon EC2 instances. We refer to
each EC2 instance used as a node, corresponding to a ‘process’ as in the protocol
descriptions. For each value of n (the number of nodes) chosen, we ran exper-
iments with an equal number of nodes from four regions: Oregon (us-west-2),
Ohio (us-east-2), Singapore (ap-southeast-1) and Frankfurt (eu-central-1). The
type of instance chosen was c4.xlarge, which provide 7.5 GiB of memory, and
4 vCPUs, i.e., 4 cores of an Intel Xeon E5-2666 v3 processor. We performed
between 50 and 60 iterations for each value of n and t we benchmarked. We
varied n incrementally, and varied ¢ both with respect to the maximum fault-
tolerance (i.e., t = [“5]), and also fixed t = 6 for values of n = 20,40, ...
All networking code, and the application logic, was written in Python (2.7). As
we have implemented our cryptosystems in golang, we call our libraries from
Python using ctypes?. To simulate reliable channels, nodes communicate over

* https://docs.python.org/2/library/ctypes.html
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TCP. Nodes begin timing once all connections have been established (i.e., after
handshaking).

Our protocol, Anonymised Vector Consensus Protocol (AVCP), was imple-
mented on top of the existing DBFT [18] codebase, as was the case with our
implementation of AARB-broadcast, i.e., AARBP. We do not use the fast-path
optimisation described in Section 4, but we hash messages during reliable broad-
cast to reduce bandwidth consumption. We use the most conservative choice of
ring signatures, O(kn)-sized traceable ring signatures [30], which require O(n)
operations for each signing and verification call, and O(n?) work for tracing over-
all. Each process makes use of a single anonymous broadcast in each run of the
algorithm. To simulate the increased latency afforded by using publicly-deployed
anonymous networks, processes invoke a local timeout for 750 ms before invoking
anon_broadcast, which is a regular broadcast in our experiments.

AARBP vs AVCP DBFT vs AVCP
e AARBP (t = max) —=— DBFT
AVCP (t = max) 5 +— AVCP

o

—=— AARBP (t = 6)
—— AVCP (t = 6)

vl
IS

w

time to decide (s)
S

time to decide (s)
w

2
5 | ¥
1
1
20 40 60 80 100 20 40 60 80 100
number of nodes (n) number of nodes (n)
(a) Comparing AARBP and AVCP (b) Comparing DBFT and AVCP

Fig. 1: Evaluating the cost of the reliable anonymous broadcast (AARBP) in our
solution (AVCP) and the performance of our solution (AVCP) compared to an
efficient Byzantine consensus baseline (DBFT) without anonymity preservation

Figure 1a compares the performance of AARBP with that of AVCP. In gen-
eral, convergence time for AVCP is higher as we need at least three more message
steps for a process to decide. Given that the fast-path optimisation is used, re-
quiring 1 additional message step over AARBP in the good case, the difference
in performance between AVCP and AARBP would indeed be smaller.

Comparing AVCP with t = maz and t = 6, we see that when t = 6, con-
vergence is slower. Indeed, AVC-Validity states at least n — t values fulfilling
valid() are included in a process’ vector given that they decide. Consequently,
as t is smaller, n — t is larger, and so nodes will process and decide more values.
Although AARB-delivery may be faster for some messages, nodes generally have
to perform more TRS verification/tracing operations. As nodes decide 1 in more
instances of binary consensus, messages of the form (ID,TAG, r,ones) are prop-
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agated where |ones| is generally larger, slowing down decision time primarily
due to the size of the message.

Figure 1b compares the performance of DBFT to solve vector consensus
against AVCP. Indeed, the difference in performance between AVCP and DBFT
when n = 20 and n = 40 is primarily due to AVCP’s 750 ms timeout. As expected
when scaling up n further, cryptographic operations result in increasingly slower
performance for AVCP.

Overall, AVCP performs reasonably well, reaching convergence when n =
100 between 5 and 7 seconds depending on ¢, which is practically reasonable,
particularly when used to perform elections which are typically occasional.

6 Discussion

It is clear that anonymity is preserved if processes only use anonymous channels
to communicate, provided that processes do not double-sign with ring signa-
tures for each message type. For performance and to prevent long-term correla-
tion attacks on anonymous networks like Tor [43], it may be of interest to use
anonymous message passing to propose a value, and then to use regular chan-
nels for the rest of a given protocol execution. In this setting, the adversary can
de-anonymise a non-faulty process by observing message transmission time [2]
and the order in which messages are sent and received [49]. For example, a single
non-faulty process may be relatively slow, and so the adversary may deduce that
messages it delivers late over anonymous channels were sent by that process.

Achieving anonymity in this setting in practice depends on the latency guar-
antees of the anonymous channels, the speed of each process, and the latency
guarantees of the regular channels. One possible strategy could be to use public
networks like Tor [23] where message transmission time through the network
can be measured.’ Then, based on the behaviour of the anonymous channels,
processes can vary the timing of their own messages by introducing random mes-
sage delays [43] to minimise the correlation between messages over the different
channels. It may also be useful for processes to synchronise between protocol
executions. This prevents a process from being de-anonymised when they, for
example, invoke anon_send in some instance when all other processes are execut-
ing in a different instance.

In terms of future work, it is of interest to evaluate anonymity in different
formal models [37,52] and with respect to various practical attack vectors [49].
It will be useful also to formalise anonymity under more practical assumptions
so that the timing of anonymous and regular message passing do not correlate
highly. In addition, a reduction to a randomized [11] binary consensus algorithm
would remove the dependency on the weak coordinator used in each round of
the binary consensus algorithm we rely on [18].

® https://metrics.torproject.org/
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