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Abstract

Consensus is a fundamental problem of distributed computing. While this problem has been
known to be unsolvable since 1985, existing protocols were designed these past three decades to
solve consensus under various assumptions. Today, with the recent advent of blockchains, various
consensus implementations were proposed to make replicas reach an agreement on the order of trans-
actions updating what is often referred to as a distributed ledger. Very little work has however been
devoted to explore its theoretical ramifications. As a result existing proposals are sometimes mis-
understood and it is often unclear whether the problems arising during their executions are due to
implementation bugs or more fundamental design issues.

In this paper, we discuss the mainstream blockchain consensus algorithms and how the classic
Byzantine consensus can be revisited for the blockchain context. In particular, we discuss proof-
of-work consensus and illustrate the differences between the Bitcoin and the Ethereum proof-of-
work consensus algorithms. Based on these definitions, we warn about the dangers of using these
blockchains without understanding precisely the guarantees their consensus algorithm offers. In par-
ticular, we survey attacks against the Bitcoin and the Ethereum consensus algorithms. We finally
discuss the advantage of the recent Blockchain Byzantine consensus definition over previous defini-
tions, and the promises offered by emerging consistent blockchains.

1 Introduction

The blockchain technology [33] promises to radically transform the way individuals and companies
exchange digital assets and track securely ownership of these assets without the control of a central
authority. At its heart lies a distributed ledger that is consistent with high probability when particular
assumptions are fulfilled. In particular, the distributed set of participants guarantee its consistency
despite potentially malicious participants that behave arbitrarily, also called Byzantine failures [29].

The novelty of blockchain is a genuine combination of well-known research results taken from
distributed computing, cryptography and game theory. Its distributed nature guarantees the persis-
tence of the ledger data. Its public key crypto-system offers the capabilities for a user to sign trans-
actions that transfer assets from her account to other accounts. Its incentive mechanisms guarantee
that a subset of participants maintain the validity of the transactions. And finally, a Byzantine tolerant
consensus protocol aims at guaranteeing the integrity of the ledgers by defining a total order on newly
appended blocks of transactions.

Put into the blockchain context, the consensus problem is for the non-faulty or correct processes of
a distributed system to agree on one block of transaction at a given index of a chain of block. This
consensus problem can be stated along three properties: (i) agreement: no two correct processes de-
cided different blocks; (ii) validity: the decided block is a block that was proposed by one process;
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(iii) termination: all correct processes eventually decide. A protocol solving the consensus problem is
necessary to guarantee that blocks are totally ordered, hence preventing concurrently appended blocks
from containing conflicting transactions.

Today, with the recent advent of blockchains, various consensus implementations were proposed
to make replicas reach an agreement on the order of blocks of transactions updating the distributed
ledger. However, consensus has been known to be unsolvable since 1985. While existing protocols
were designed these past three decades to solve consensus under various assumptions, it remains un-
clear what are the guarantees offered by blockchain consensus algorithms and what are the necessary
conditions for these guarantees to be satisfied. While the source code of most blockchain protocols is
publicly available, the theoretical ramifications of the blockchain abstraction are rather informal. As
main blockchain systems, like Bitcoin [33] and Ethereum [46], are now used to trade millions of US$
every day1, it has become crucial to precisely identified its theoretical ramifications to anticipate the
situations where large volume of assets could be lost.

In this paper, we illustrate the danger of using proof-of-work blockchain without understand-
ing precisely their guarantees by listing vulnerabilities that affect the predominant proof-of-work
blockchain systems, namely Bitcoin and Ethereum.2 To this end, we describe the consensus algorithms
at the heart of these two blockchain systems. We also relate these consensus algorithms to decades of
research on the topic of distributed computing. More precisely, we identify situations where proof-of-
work blockchain consensus is violated by: (i) presenting a survey of existing attacks against the Bitcoin
consensus protocol and (ii) showing how Ethereum, which copes with some of these attacks, may suf-
fer from recent attacks, namely the blockchain anomaly [35] and the balance attack [34]. We elaborate
on the risks for users to misconfigure proof-of-work blockchain systems when deploying them as a
private and consortium blockchains and our own experience with the settings of the R3 Ethereum
testbed. The fact that both main proof-of-work blockchains are vulnerable allows us to conclude that
more research is necessary to design safe consensus algorithms suited for blockchains.

The rest of the paper is organized as follows. Section 2 presents the general blockchain model.
Section 3 introduces the classic Byzantine consensus problem and the probabilistic variant of it. Sec-
tion 4 specifies the differences of the consensus algorithms used in Bitcoin and Ethereum. Section 5
describes the attacks against Bitcoin and two recent attacks against the Ethereum consensus algorithm.
Section 6 redefines the Byzantine consensus in the light of the blockchain context. Section 7 discusses
the consortium model and recent reliable consensus proposals. Section 8 concludes.

2 The General Proof-Of-Work Blockchain Model

In this section we model a simple distributed system as a communication graph that implements a
blockchain abstraction as a directed acyclic graph. We propose a high-level pseudocode representation
of proof-of-work blockchain protocols in this model.

2.1 A simple distributed model for blockchains

We consider a communication graph G = 〈V, E〉 with processes V connected to each other through
fixed communication links E. Processes are part of a blockchain system S. In this paper, we only
consider proof-of-work blockchain systems and focus our attention to Bitcoin and Ethereum. Processes
can act as clients by issuing transactions to the system and/or servers by mining, the action of trying
to combine transactions into a block as described in Section 2.2. For the sake of simplicity, we consider
that each process possesses a single account (or address) and that a transaction issued by process pi is a

1https://coinmarketcap.com/exchanges/volume/24-hour/.
2Bitcoin and Ethereum are the current most important blockchain systems in terms of market capitalisation.
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transfer of digital assets or coins from the account of the source process pi to the account of a destination
process pj 6= pi. Each transaction is uniquely identified and broadcast to all processes in a best-effort
manner. We assume that a process re-issuing the same transfer multiple times creates as many distinct
transactions.

Processes that initiate the consensus protocol are called miners, they initiate the consensus through
a propose function depicted at lines 7–12 of Alg. 1 allowing them to propose new blocks. Processes
decide upon a new block at a given index at line 18 depending on a function get-main-branch that is
specific to the type of proof-of-work blockchain system in use (cf. Sections 4.3.1 and 4.3.2 for Bitcoin
and Ethereum corresponding function, respectively). We refer to the computational power of a miner
as its mining power and we denote the total mining power t as the sum of the mining powers of all
miners in V. Each miner tries to group a set T of transactions it heard about into a block b ⊇ T as long
as transactions of T do not conflict and that the account balances remain non-negative. For the sake of
simplicity in the presentation, the graph G is static meaning that no processes can join and leave the
system, however, processes may fail as described in Section 2.3.

Algorithm 1 The general proof-of-work blockchain consensus algorithm at process pi
1: `i = 〈Bi , Pi〉, the local blockchain at node pi is a directed acyclic
2: graph of blocks Bi and pointers Pi
3: b, a block record with fields:
4: parent, the block preceding b in the chain, initially ⊥
5: pow, the proof-of-work nounce of b that solves the cryptopuzzle, initially ⊥
6: children, the successor blocks of b in the chain

7: propose()i : � function invoked to solve consensus
8: while true do � do forever
9: nounce = local-random-coin() � toss a local coin to get a nounce

10: create block b : b.parent = last-block(`i) and b.pow = nounce � create a new block
11: if solve-cryptopuzzle(nounce, b) then � if the chosen nounce solves the puzzle
12: broadcast(〈{b}, {〈b, b.parent〉}〉) � broadcast to all (including to himself)

13: deliver(〈Bj, Pj〉)i : � upon reception of blocks
14: Bi ← Bi ∪ Bj � update vertices of blockchain
15: Pi ← Pi ∪ Pj � update edges of blockchain
16: 〈B′i , P′i 〉 ← get-main-branch() � recompute the main branch
17: if b0 ∈ B′i ∧ ∃b1, ..., bm ∈ Bi : 〈b1, b0〉, 〈b2, b1〉..., 〈bm, bm−1〉 ∈ Pi then � if enough blocks
18: decide(b0) � consensus is reached

2.2 Miners must solve a cryptopuzzle to create a new block

Miners provably solve a hashcash cryptopuzzle [9] before creating a new block. Given a global thresh-
old and the block of largest index the miner knows (Alg. 1, line 10), the miner repeatedly selects a
nonce and applies a pseudo-random function to this block and the selected nonce until it obtains a re-
sult lower than the threshold, this mechanism is hidden within the solve-cryptopuzzle function at line 11
for clarity. Upon success the miner creates a block that contains the successful nounce as a proof-of-
work as well as the hash of the previous block, hence fixing the index of the block, and broadcasts the
block (line 12). This broadcast function with some block and pointer parameter at process pi triggers
a corresponding deliver function with the same parameter that is invoked at each correct process pj
(including pi if it is correct) upon reception of this broadcast message (line 13). As there is no known
strategy to solve the cryptopuzzle, the miners simply keep testing whether randomly chosen numbers
solve the cryptopuzzle with brute force. The difficulty of this cryptopuzzle, defined by the threshold,
limits the rate at which new blocks can be generated by the network.
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(a) view `1 (b) view `2 (c) view `3 (d) global state `0 = `1 ∪
`2 ∪ `3

Figure 1: The global state `0 of a blockchain results from the union of the distributed local views `1, `2
and `3 of the blockchain

2.3 The failure model

The value of coins in blockchain systems incentivizes participants to act maliciously if they can max-
imize their gain by for example executing a double-spending attack, spending the same coins in two
distinct transactions. Malicious behaviors are generally modeled by an arbitrary or Byzantine failure
model that is named after the problem of generals attempting to reach an agreement in the presence
of traitors [29]. In the Byzantine failure model, such a problem is usually referred to as the Byzantine
consensus problem. Some solutions like PBFT [13] were proposed, however, there are known not to
scale to a number of participants as large as mainstream public blockchain systems [16, 44].

There are different failure models that separate faulty processes from correct processes. In a crash
failure model, the faulty processes may crash at which point they stop computing and stop communi-
cating for the rest of the execution. In a Byzantine failure model, the faulty processes may not follow
the protocol specification by behaving arbitrarily. When not stated otherwise, we consider a Byzan-
tine failure model and assume the presence of an adversary (or attacker) that can control processes that
together own a relatively small fraction ρ < 0.5 of the total mining power of the system. The pro-
cesses controlled by the adversary are called malicious or Byzantine and may not follow the protocol
specification, however, they cannot impersonate other processes while issuing transactions.3 We also
assume that the adversary can transiently disrupt communications on a selected subset of edges E0 of
the communication graph G.

3 The Consensus Problem for the General Model

Blockchain systems resemble replicated state machine [47] and aim at solving the consensus problem,
so that for a given index all correct processes agree on a unique block of transactions at this index. Note
that nodes may propose different blocks at the same index because remote miners solve cryptopuzzles
in the time it takes to exchange their new resulting block—this is generally observed with a fork as we
will explain in Section 4.2. The classic definition of consensus in the Byzantine failure model is either
called Byzantine agreement or Byzantine consensus and is defined along three properties.

Definition 1 (Byzantine Consensus). The Byzantine Consensus problem is to guarantee the conjunction of
these three properties for a given index:

3This is typically ensured through public key crypto-systems.
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• Agreement: no two correct processes decide different blocks;

• Termination: all correct processes eventually decide a block;

• Validity: the decided block is a block proposed by some process.

An algorithm has to fulfil these three properties to solve the Byzantine Consensus problem.

Blockchain systems operate over a network, like the Internet, in which the assumption of commu-
nication synchrony, where every message gets delivered within a known period of time, might be unre-
alistic. Unfortunately, consensus is known to be unsolvable in asynchronous networks even in the case
of a simple crash failure [21]. To cope with this impossibility, various proposals relaxed the guarantees
of the classic Byzantine consensus in favor of probabilistic guarantees by exploiting randomization.

3.1 Randomized consensus

Randomization helps bypassing the impossibility result by guaranteeing probabilistic properties in-
stead of deterministic ones. Rabin [39] proposed a solution to the Byzantine consensus in the asyn-
chronous case that terminates in a constant expected time, by combining digital signatures and a
trusted leader with randomization. Randomized solutions [3] were also investigated to solve con-
sensus with high probability. Ben-Or’s consensus protocol [6] was the first to always ensure agreement
but guaranteeing termination with high probability in the crash failure model with up to f < n

2 faulty
processes where n is the number of participants and f is an upper-bound on the number of failures.
Since then, randomisation has been extensively used to help solving consensus [11, 32, 30].

It is not easy to relate the probabilistic guarantees offered by proof-of-work blockchain consensus
protocols to the consensus definition used in the distributed computing literature. For example, the
Bitcoin analysis relies on the fact that the probability of agreement upon a block at a given index of
the blockchain increases exponentially with the depth of the blockchain [33]. In theory, one can thus
consider that Bitcoin solves agreement but not termination, as it solves agreement with probability 1
when the execution is infinite. Another way of looking at it is to consider that Bitcoin solves termination
but not agreement: if after a finite time or a finite number i + k of blocks i + k have been mined, we say
that consensus is reached for block at index i, then the probability that agreement is satisfied is lower
than 1: agreement is not guaranteed.

3.2 Termination requirements

There exist, however, important guarantees that are needed by the applications that make use of
blockchains. One of these key consensus properties that must be guaranteed for most blockchain ap-
plications is termination [25]. For the sake of responsiveness and availability, the application must
respond to the client [45]. As an example, a client issuing a transaction to buy goods must eventually
receive a response indicating the success or failure of its transaction. As another example, a financial
application may require settlement finality, to reduce the risk of insolvency of a participant.4

Some blockchain protocols, like Bitcoin-NG [18], have however been proposed with the idea of
guaranteeing termination with some probability, hence leaving room for an application to be unrespon-
sive in rare cases. If the termination is not guaranteed deterministically, then the application cannot
respond. Other consensus algorithms rely on some leader self-electing itself probabilistically [7]. Some
blockchain applications must actually terminate deterministically in order to alleviate the settlement
risks observed in financial applications.5

4http://ec.europa.eu/finance/financial-markets/settlement/index_en.htm.
5http://tabbforum.com/opinions/settlement-risks-involving-public-blockchains.
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Figure 2: The blockchain structure starts with a genesis block at index 0 and links successive blocks in
reverse order of their index; a new block is decided at index i > 0 when the blockchain depth reaches
i + k (note that a blockchain of depth 0 is the genesis block)

Interestingly, one could propose a different definition from the problem solved by Bitcoin-NG by
defining the termination of the Bitcoin consensus protocol [33], which is used in Bitcoin, as follows. One
can observe the creation of distinct blocks at the same index of a blockchain as a transient violation of
agreement as depicted with the two blocks at index i + k in Figure 2. Under the synchrony assumption,
a reorganization (cf. Section 4.3) guarantees however with high probability that the block at index i is
uniquely decided when the chain depth reaches i + k. Garay et al. [22] noted that this probability grows
exponentially fast with the depth. Applications can then consider that the depth reaching i + k as
the termination of consensus for the block at index i, indicating that the transactions of this block are
successfully committed [25] and, for example, that goods bought by these transactions can be shipped.
Following this reasoning and selecting an appropriate parameter k, one can show that Bitcoin can,
in principle (provided that message delays are bounded and that correct processes have a sufficient
computational power), solve the Monte Carlo Byzantine consensus problem (described below).

3.3 Monte Carlo consensus

Monte Carlo algorithms are interesting for applications with termination requirements as they guar-
antee termination even though they may return an incorrect outcome. Monte Carlo consensus was
defined as a variant of the Byzantine consensus where safety properties could be violated with non-
null probability but where the termination would typically be guaranteed [4]:

Definition 2 (Monte Carlo Byzantine Consensus). The Monte Carlo Byzantine Consensus problem is
to guarantee the conjunction of these three properties:

• Probabilistic agreement: no two correct processes decide different blocks with probability at least δ;

• Termination: all correct processes eventually decide a block;

• Validity: the decided block is a block proposed by some process.

An algorithm has to fulfil these three properties to solve the Monte Carlo Byzantine Consensus problem.

This variant of consensus would guarantee that the blockchain application returns a (sometimes
incorrect) result to the client. To avoid being unresponsive, the application could decide of a timeout
after which it considers the transaction successful even though the blockchain consensus did not ac-
knowledge this success. For example, a merchant could wait for a predetermined period during which
it observes any possible invalidation of the transaction by the blockchain. After this period and if no
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invalidation occurred, the transaction is considered valid. Note that there exist variants of the Monte
Carlo consensus problem where the validity is also probabilistic [31].

In the worst case scenario, the merchant may be wrong and the transaction may eventually be
considered invalid, in which case the merchant will loose goods. Provided that this scenario occurs
with a sufficiently small probability over all transactions, the merchant can predetermine its waiting
period based on her expected gain over a long series of transactions.

4 Main Blockchain Consensus Algorithms

In this section we build upon Algorithm 1 to explore the differences and similarities of the consensus
algorithms of Bitcoin and Ethereum, which are today’s predominant blockchain systems.

4.1 Directed Acyclic Graph

Let the blockchain be a directed acyclic graph (DAG) ` = 〈B, P〉 such that blocks of B point to each other
with pointers P and a special block g ∈ B, called the genesis block, does not point to any block. There
are two important assumptions to guarantee the DAG structure:

1. Collision-resilience assumption: The hashing function used for computing the hash of a block is
collision resilient and the content of each block is unique.

2. Unique-pointer-per-block assumption: Each non-genesis block contains exactly one hash of another
block, hence its outdegree is 1.

Algorithm 1 describes the progressive construction of the blockchain at a particular node pi upon
reception of blocks from other processes by simply aggregating the newly received blocks to the known
blocks (lines 13–15). As every added block contains a hash to a previous block that eventually leads
back to the genesis block indicated by its parent field, each block is associated with a fixed index. By
convention we consider the genesis block at index 0, and the blocks at k hops away from the genesis
block as the blocks at index k. As an example, consider the simple blockchain `1 = 〈B1, P1〉 depicted
in Figure 1(a) where B1 = {g, b1} and P1 = {〈b1, g〉}. The genesis block g has index 0 and the block b1
has index 1.

4.2 Forks as disagreements on the blocks at a given index

As depicted by views `1, `2 and `3 in Figures 1(a), 1(b) and 1(c), respectively, processes may have a
different views of the current state of the blockchain. In particular, it is possible for two miners p1
and p2 to mine almost simultaneously two different blocks, say b1 and b2. If neither block b1 nor b2
was propagated early enough to processes p2 and p1, respectively, then both blocks would point to the
same previous block g as depicted in Figures 1(a) and 1(b). Because network delays are not predictable,
a third node p3 may receive the block b1 and mine a new block without hearing about b2. The three
processes p1, p2 and p3 thus end up having three different local views of the same blockchain, denoted
`1 = 〈B1, P1〉, `2 = 〈B2, P2〉 and `3 = 〈B3, P3〉.

We refer to the global blockchain as the directed acyclic graph `0 = 〈B0, P0〉 representing the union
of these local blockchain views, denoted by `1 ∪ `2 ∪ `3 for short, as depicted in Figure 1, and more
formally defined as follows: {

B0 = ∪∀iBi,
P0 = ∪∀iPi.
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The point where distinct blocks of the global blockchain DAG have the same predecessor block is called
a fork. As an example Figure 1(d) depicts a fork with two branches pointing to the same block: g in this
example.

In the remainder of this paper, we refer to the DAG as a tree rooted in g with upward pointers
allowing children blocks to point to their parent block.

4.3 The main branch selection process

To resolve the forks and define a deterministic state agreed upon by all processes, a blockchain system
must select a main branch, as a unique sequence of blocks, based on the tree. Building upon the general
proof-of-work consensus algorithm (Alg. 1), we present now the characteristics of the Bitcoin consensus
algorithm (Alg. 2) [33] and a variant of the Ethereum consensus algorithm (Alg. 3) [46], also called
GHOST [42].6

4.3.1 The Bitcoin consensus algorithm

The difficulty of the cryptopuzzles used in Bitcoin produces a block every 10 minutes in expectation.
The advantage of this long period, is that it is relatively rare for the blockchain to fork because blocks
are rarely mined during the time others are propagated to the rest of the processes.

Algorithm 2 The additional field and functions used by the Bitcoin consensus at pi
19: m = 5, the number of blocks to be appended after the block containing
20: tx, for tx to be committed in Bitcoin

21: get-main-branch()i : � select the longest branch
22: b← genesis-block(Bi) � start from the blockchain root
23: while b.children 6= ∅ do � prune shortest branches
24: block← argmaxc∈b.children{depth(c)} � root of deepest subtree
25: B← B ∪ {block} � update vertices of main branch
26: P← P ∪ {〈block, b〉} � update edges of main branch
27: b← block � move to next block
28: return 〈B, P〉 � returning the Bitcoin main branch

29: depth(b)i : � depth of tree rooted in b
30: if b.children = ∅ then return 1 � stop at leaves
31: else return 1 + maxc∈b.children depth(c) � recurse at children

Algorithm 2 depicts the Bitcoin-specific pseudocode that includes its consensus protocol to decide
on a particular block at some index (lines 21–31) and the choice of parameter m (line 19) explained later
in Section 4.4. When a fork occurs, the Bitcoin protocol resolves it by selecting the deepest branch as
the main branch (lines 21–28) by iteratively selecting the root of the deepest subtree (line 24). When
process pi is done with this pruning, it obtains the main branch of its blockchain view. Note that
the pseudocode for checking whether a block is decided and a transaction committed based on this
parameter m is common to Bitcoin and Ethereum, and was presented in lines 13–18 of Alg. 1; only the
parameter m used in these lines differ between the Bitcoin consensus algorithm (Alg. 2, line 19) and
this variant of the Etherem consensus algorithm (Alg. 3, line 19).

6At the time of writing, the Ethereum consensus algorithm in use differs significantly from the GHOST protocol. For the sake
of simplicity, we will focus here on the GHOST protocol when referring to the Ethereum consensus algorithm.
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Figure 3: Nakamoto’s consensus protocol at the heart of Bitcoin selects the main branch as the deepest
branch (in black) whereas the GHOST consensus protocol at the heart of Ethereum follows the heaviest
subtree (in grey)

4.3.2 The Ethereum consensus algorithm

As opposed to the Bitcoin protocol, Ethereum generates one block every 12–15 seconds.7 While it
improves the throughput (transactions per second) it also favors transient forks as miners are more
likely to propose new blocks without having heard about the latest mined blocks yet. To avoid wasting
large mining efforts while resolving forks, Ethereum uses a variant GHOST (Greedy Heaviest Observed
Subtree) consensus algorithm that accounts for the, so called uncles, blocks of discarded branches. In
contrast with the Bitcoin consensus protocol, the GHOST consensus protocol iteratively selects, as the
successor block, the root of the subtree that contains the largest number of nodes (cf. Algorithm 3).
Note that the current code of Ethereum selects a branch based on the difficulty of the cryptopuzzles
solved to obtain the blocks of this branch without comparing the sizes of the subtrees.

Algorithm 3 The additional field and functions used by the Ethereum consensus at pi
19: m = 11, the number of blocks to be appended after the block containing
20: tx, for tx to be committed in Ethereum (since Homestead v1.3.5)

21: get-main-branch()i : � select the branch with the most nodes
22: b← genesis-block(Bi) � start from the blockchain root
23: while b.children 6= ∅ do � prune lightest branches
24: block← argmaxc∈b.children{num-desc(c)} � root of heaviest tree
25: B← B ∪ {block} � update vertices of main branch
26: P← P ∪ {〈block, b〉} � update edges of main branch
27: b← block � move to next block
28: return 〈B, P〉. � returning the Ethereum main branch

29: num-desc(b)i : � number of nodes in tree rooted in b
30: if b.children = ∅ then return 1 � stop at leaves
31: else return 1 + ∑c∈b.children num-desc(c) � recurse at children

The main difference between the Bitcoin and Ethereum consensus protocols is depicted in Figure 3,
where the black blocks represent the main branch selected by Nakamoto’s consensus protocol and the
grey blocks represent the main branch selected by GHOST.

7This period increases regularly under the influence of a recent algorithm called “the time bomb” that adapts the difficulty of
crypto-puzzle.
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4.4 Decided blocks and committed transactions

A blockchain system S must define when the block at an index is agreed upon. To this end, it has
to define a point in its execution where a prefix of the main branch can be “reasonably” considered
as persistent.8 More precisely, there must exist a parameter m provided by S for an application to
consider a block as decided and its transactions as committed. This parameter is typically mbitcoin = 5 in
Bitcoin (Alg. 2, line 19) and methereum = 11 in Ethereum (Alg. 3, line 19). Note that these two choices
do not lead to the same probability of success [23] and different numbers are suggested by different
applications [35].

Definition 3 (Transaction commit). Let `i = 〈Bi, Pi〉 be the blockchain view at node pi in system S. For a
transaction tx to be locally committed at pi, the conjunction of the following properties must hold in pi’s view
`i:

1. Transaction tx has to be in a block b0 ∈ Bi of the main branch of system S. Formally, tx ∈ b0 ∧ b0 ∈ B′i :
ci = 〈B′i , P′i 〉 = get-main-branch()i.

2. There should be a subsequence of m blocks b1, ..., bm appended after block b. Formally, ∃b1, ..., bm ∈ Bi :
〈b1, b0〉, 〈b2, b1〉, ..., 〈bm, bm−1〉 ∈ Pi. (In short, we say that b0 is decided.)

A transaction tx is committed if there exists a process pi where tx is locally committed.

Property (1) is needed because processes eventually agree on the main branch that defines the cur-
rent state of accounts in the system—blocks that are not part of the main branch are ignored. Property
(2) is necessary to guarantee that the blocks and transactions currently in the main branch will persist
and remain in the main branch. Before these additional blocks are created, processes may not have
reached consensus regarding the unique blocks b at index j in the chain. This is illustrated by the fork
of Figure 1 where processes consider, respectively, the pointer 〈b1, g〉 and the pointer 〈b2, g〉 in their
local blockchain view. By waiting for m blocks were m is given by the blockchain system, the system
guarantees with a reasonably high probability that processes will agree on the same block b.

For example, consider a fictive blockchain system with mfictive = 2 that selects the heaviest branch
(Alg. 3, lines 21–28) as its main branch. If the blockchain state was the one depicted in Figure 3, then
blocks b2 and b5 would be decided and all their transactions would be committed. This is because they
are both part of the main branch and they are followed by at least 2 blocks, b8 and b13. (Note that we
omit the genesis block as it is always considered decided but does not include any transaction.)

5 How Proof-Of-Work Blockchains Can be Unsafe

As a drawback of randomized consensus with deterministic termination, the safety properties of main
blockchain systems can be violated. Research efforts were devoted to understand the impact of net-
work delays and mining power distribution on the probability of agreement violations in Bitcoin and
Ethereum, leading potentially to double spending, a formalization of which can be find in [1] and [36],
respectively. Building upon the tradeoff between termination and agreement mentioned in Section 3.3,
a solution would be to make the termination dependent on environmental factors, like network delays
and mining power variations in order to guarantee a minimal probability of success.

Unfortunately, existing applications simply rely on fixed parameters regardless of these factors,
like waiting for a fixed number m of blocks to be mined in order to reach termination. As we will
see in Section 5.1, there are multiple ways Byzantine processes can vary the delays and mining power

8In theory, there cannot be consensus on a block at a particular index [21], hence preventing persistence, however, applications
have successfully used Ethereum to transfer digital assets based on parameter methereum = 11 [35].
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to double spend in Bitcoin and Ethereum, and some already translated in significant financial losses.
As we describe in Sections 5.2 and 5.3, some of these issues are not inherent to the Bitcoin consensus
protocol but could also occur with the Ethereum consensus protocol. With the advent of consortium
and private blockchains, some of these factors are even simply produced by a misconfiguration of the
deployed blockchain systems.

5.1 Attacks against Bitcoin

Traditional attacks against Bitcoin consist of waiting for some external action, like shipping goods, in
response to a transaction before discarding the transaction from the main branch. As the transaction is
revoked, the issuer of the transaction can reuse the coins of the transaction in another transaction. As
the side effects of the external action cannot be revoked, the second transaction appears as a “double
spending”.

Perhaps the most basic form of such an attack assumes that an application takes an external action
as soon as a transaction is included in a block [20, 28, 5]. The first attack of this kind is called Finney’s
attack and consists of solo-mining a block with a transaction that sends coins to itself without broad-
casting it before issuing a transaction that double-spends the same coin to a merchant. When the goods
are delivered in exchange of the coins, the attacker broadcasts its block to override the payment to the
merchant. The vector76 attack [43] consists of an attacker solo-mining after block b0 a new block b1
containing a transaction to a merchant to purchase goods. Once another block b′1 is mined after b0, the
attacker quickly sends b1 to the merchant for an external action to be taken. If b′1 is accepted by the
system, the attacker can issue another transaction with the coins spent in the discarded block b1.

The attacks become harder if the external action is taken after the transaction is committed by the
blockchain. Rosenfeld’s attack [40] consists of issuing a transaction to a merchant. The attacker then
starts solo-mining a longer branch while waiting for m blocks to be appended so that the merchant
takes an external action in response to the commit. The attack success probability depends on the
number m of blocks the merchant waits before taking an external action and the attacker mining power.
However, when the attacker has more mining power than the rest of the system, the attack, also called
majority hashrate attack or 51-percent attack, is guaranteed successful, regardless of the value m. To make
the attack successful when the attacker owns only a quarter of the mining power, the attacker can
incentivize other miners to form a coalition [19] until the coalition owns more than half of the total
mining power.

Without a quarter of the mining power, discarding a committed transaction in Bitcoin requires ad-
ditional power, like the control over the network. It is well known that delaying network messages
can impact Bitcoin [17, 38, 42, 24, 37]. Decker and Wattenhoffer already observed that Bitcoin suffered
from block propagation delays [17]. Godel et al. [24] analyzed the effect of propagation delays on Bit-
coin using a Markov process. Garay et al. [22] investigated Bitcoin in the synchronous communication
setting. Pass et al. extended the analysis for when the bound on message delivery is unknown and
showed in their model that the difficulty of Bitcoin’s crypto-difficulty has to be adapted depending
on the bound on the communication delays [38]. This series of work reveal an important limitation
of Bitcoin: delaying propagation of blocks can waste the computational effort of correct processes by
letting them mine blocks unnecessarily at the same index of the chain. In this case, the attacker does
not need more mining power than the correct miners, but simply needs to expand its local blockchain
faster than the growth of the longest branch of the correct blockchain.

Ethereum proposed the GHOST protocol to cope with this issue [42]. The idea is simply to account
for the blocks proposed by correct miners in the multiple branches of the correct blockchain to select
the main branch. As a result, growing a branch the fastest is not sufficient for an attacker of Ethereum
to be able to double spend.
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Figure 4: The blockchain anomaly: a first client issues ti that gets successfully mined and committed
then a second client issues tj, with tj being conditional to the commit of ti (note that j ≥ i + k for ti
to be committed before tj gets issued), but the transaction tj gets finally reorganized and successfully
committed before ti, hence violating the dependency between ti and tj

5.2 The blockchain anomaly in Ethereum

We identified the Blockchain anomaly [35] that prevents someone from executing dependent transac-
tions like “Bob transfers some coins to Carole only if it received coins from Alice” and that allows an
attacker to double spend. This issue is named the Blockchain anomaly after the Paxos anomaly [8]
because it stems from a reordering of decided blocks. In contrast to the Paxos anomaly, the Blockchain
anomaly occurs even if Bob waits for the reception of the money from Alice to be successfully commit-
ted before transferring to Carole.

The Blockchain anomaly was experimented on an Ethereum private chain with 2 mining pools
running geth v1.4.0 in a controlled network. Although two miners mine on the same chain starting
from the same genesis block, a long enough delay in the delivery of messages could lead to having the
miners seemingly agree separately on different branches containing more than m blocks each, for any
m ∈ N. When messages get finally delivered, the results of the disagreement creates inconsistencies,
like the reordering or deletion of transactions from previously decided blocks.

Precisely because the length of the branch could be adjusted to any m, it guarantees that there is
no way for an application to choose m′ sufficiently large to guarantee that consensus is reached. To
take the classic example of exchanges, choosing m′btc = 5 for Bitcoin and m′eth = 11 for Ethereum
cannot be sufficient, as there exist a m = 12 for which the Blockchain anomaly can occur. This anomaly
is dramatic as it can lead to simple double-spending attacks within a network where users have an
incentive to maximize their profits—in terms of coins or arbitrary ownership.

Figure 4 depicts the blockchain anomaly, where a transaction ti is proposed as part of a block at
index i from the standpoint of some processes. Based on this observation, one waits for ti to commit
before proposing a new transaction tj. Again, one can imagine a simple scenario where “Bob transfers
an amount of money to Carole” (tj) only if “Bob had successfully received some money from Alice”
(ti) before. However, once these processes get notified of another branch of committed transactions,
they decide to reorganize the branch to resolve the fork. The reorganization removes the committed
transaction ti from slot i. Later, the transaction tj is successfully committed in slot i. A reproducible
distributed execution is described in detail in [35].

This anomaly translates into a scenario that is counter-intuitive for the user of Ethereum: a transac-
tion may not persist even though it is committed. This illustrates that in addition to the attacks against
Bitcoin, there exist attacks against other form of proof-of-work consensus algorithms, like Ethereum’s.
Moreover, this scenario is realistic in the context of private chains where participating competitors have
direct access to some of the resources. The Blockchain anomaly stems from the fact that in a private
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chain the reward system does not necessarily incentivize many processes to mine correctly. Note that
in the R3 experiments not all processes were mining because it was decided they would not do so [34].

5.3 The balance attack against Ethereum

In the Balance Attack [34], an attacker transiently disrupts communications between subgroups of
Ethereum miners of similar mining power. During this time, the attacker issues transactions in one
subgroup, say the transaction subgroup, and mines blocks in another subgroup, say the block subgroup,
up to the point where the tree of the block subgroup outweighs, with high probability, the tree of the
transaction subgroup.

The balance attack is simple: after the attacker introduces a delay between correct subgroups of
equivalent mining power, it simply issues transactions in one subgroup. The attacker then mines suf-
ficiently many blocks in another subgroup to ensure with high probability that the subtree of another
subgroup outweighs the transaction subgroup’s. Even though the transactions are committed, the at-
tacker can rewrite with high probability the blocks that contain these transactions by outweighing the
subtree containing this transaction.

Note that one could benefit from delaying messages only between the merchant and the rest of
the network by applying the eclipse attack [27] to Ethereum. Eclipsing one node of Bitcoin appeared,
however, sufficiently difficult: it requires to restart the node’s protocol in order to control all the logical
neighbors the node will eventually try to connect to. While a Bitcoin node typically connects to 8 logical
neighbors, an Ethereum node typically connects to 25 nodes, making the problem even harder. Another
option would be to isolate a subgroup of smaller mining power than another subgroup, however, it
would make the attack only possible if the recipients of the transactions are located in the subgroup
of smaller mining power. Although possible this would limit the generality of the attack, because the
attacker would be constrained on the transactions it can override.

Note that the Balance Attack inherently violates the persistence of the main branch prefix and is
enough for the attacker to double spend. The attacker has simply to identify the subgroup that contains
merchants and create transactions to buy goods from these merchants. After that, it can issue the
transactions to this subgroup while propagating its mined blocks to at least one of the other subgroups.
Once the merchant shipped goods, the attacker stops delaying messages. Based on the high probability
that the tree seen by the merchant is outweighed by another subtree, the attacker could reissue another
transaction transferring the exact same coin again.

6 Defining the Blockchain Byzantine Consensus

Perhaps the main reasons why large-scale blockchain systems suffer from such inconsistencies is that
the existing consistent consensus solutions are inefficient due to the restrictive problem that they solve.
In particular, safe blockchain typically use off-the-shelf algorithms (e.g., PBFT, BFTSmart) that solves
the classic Byzantine consensus (Definition 1) as a blackbox. This typically prevents them from scaling
to tens of nodes.

In the light of this limitation, we revisited the Byzantine consensus problem as a problem tailored
to blockchain system, called the Blockchain Consensus [14]. Its distinction relies on its validity property
that makes use of the validation inherent to blockchain system: a blockchain-specific valid predicate
that guarantees that a set of transaction can be executed. Assuming that each correct process proposes
a valid value, each of them has to decide on a value in such a way that the following properties are
satisfied.

Definition 4 (Blockchain Byzantine Consensus). The Blockchain Byzantine Consensus problem is to
guarantee the conjunction of these three properties for a given index:
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• Agreement: no two correct processes decide different blocks;

• Termination: all correct processes eventually decide a block;

• Validity: a decided block is valid, it satisfies the predefined predicate valid.

An algorithm has to fulfil these three properties to solve the Blockchain Byzantine Consensus problem.

As far as we know, the only algorithm that solves the Blockchain Byzantine Consensus problem is
called the Democratic BFT (DBFT) and was first formalized in [15]. The reason why this definition of
consensus is better suited to blockchain is twofold. First, the valid predicate allows the blockchain to
decide a block of transactions that was proposed by Byzantine participants. This difference is possible
thanks to the use of the valid predicate that defines the validity of a block proposed by a Byzantine
participant. Without this valid predicate, the decided value could not be one of the values proposed
by a Byzantine as these are undefined. Second, the decided value does not need to be one of the
proposed value. This allows to decide a number of transactions that grows potentially with the number
of participants. To solve the classic Byzantine consensus, only one of the proposed block could be
decided, hence limiting the number of decided block to 1 out of n− t blocks of transactions proposed
by correct participants. To solve the Blockchain consensus, however, the decided block could represent
the union of all the n− t blocks proposed by correct participants.

7 Refining the Blockchain Model for Consortiums

As we discussed previously, the risk of safety violation of main blockchain systems stems from the
impossibility of solving consensus deterministically in the general case, which also applies to the more
general Blockchain Byzantine consensus (Definition 4). There are however solutions that consist of
restricting the model by listing additional assumptions under which an alternative blockchain system
could be made both safe and live. The consortium model is getting traction for allowing a pre-selected
set, called consortium, of participants typically part of different institutions control the consensus pro-
tocol of the blockchain system.

7.1 Differences between consortium and classic blockchain models

The main differences with the public blockchain model are listed below.

1. Permissioned: only a specified set of institutions can participate in the consensus of the consor-
tium blockchain. The fact that each participant needs a permission to participate in the consensus
does not prevent other users to potentially access the current state of the blockchain, they simply
cannot take part of the decision process. The appealing aspects of this consortium is that the
decision is not controlled by a leader [26] or a single institution as in the case of fully-private
blockchains. This is also in contrast with the permissionless Bitcoin and Ethereum main chain in
which any participant connected to Internet can join at any time, and alleviates the problem of
having an uncontrollable amount of nodes wasting resources.

2. Global knowledge: given that the membership is pre-determined, one can reasonably assume
that most participants are aware of the exact list of the n participants of the consortium. Con-
sequently, any participant that lags behind, simply needs to contact a majority or a quorum of
participants to catch up with the most up-to-date system size n. Moreover, this fixed list of partic-
ipants naturally prevents an attacker from executing a Sybil attack by forging multiple identities
it can control.
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3. Bound on the number of failures: given that the list of participants is known, one can reason-
ably assume that a malicious participant cannot convince the consortium to introduce a large
number of fake identities in comparison to the consortium size. Moreover, one can assume that
new participants go through a detailed KYC (know-your-customer) process before getting the
permission to join the consortium. This makes it realistic to limit coalitions of f malicious partic-
ipants to f << n at the same time.

Despite these differences, the consortium blockchain model is close to the original blockchain model
as we explain below.

7.2 Similarities between consortium and classic blockchain models

The consortium model is still very close to the general blockchain model.

1. The failure model is the same as in the classic model. It is still necessary to tolerate Byzantine
failures in a consortium model as the participating institutions can have conflicting interests, and
the blockchain should protect from the possible misbehavior of a participant.

2. The communication model is also the same as in the classic model. These institutions may be
located in different regions of the globe and typically communicate through internet when issu-
ing transactions. The Internet is unpredictable and the delay of a message cannot be known in
advance. In particular, the Internet network is shared by machines external to the consortium
and is subject to large localized failures due to disasters, it is thus impossible to control or even
anticipate traffic disruptions, congestions and delays.

Provided that f < n
3 , practical Byzantine fault tolerant solutions could be used realistically to solve

the Byzantine consensus in the consortium blockchain model and without the need for proof-of-work.
Of course, practical Byzantine fault tolerant solutions remain quite limited for several reasons: (i) they
usually require a leader election that is difficult to implement and that conflicts with the inherent de-
centralization aim of blockchains: in particular it is impossible to elect a correct leader as a Byzantine
leader could act correctly up to the point where it gets elected, (ii) they often employ complex tech-
niques to circumvent the impossibility result like a global random coin that returns the same random
value to any process and whose values cannot be anticipated by Byzantine processes, and (iii) they
typically rely on costly public-key cryptosystems to guarantee authentication.

7.3 Consortium blockchain systems

Consortium blockchains are getting popular for companies to benefit from the blockchain properties in
a controlled environment where the consensus participants are fixed and well-known. While not full-
fledged yet, some blockchain systems were proposed for companies to run a consortium blockchain.

7.3.1 Ripple

The consensus protocol of Ripple, the third largest digital currency in market capitalization, was pro-
posed as a white paper and uses mutually interesting sets of replicas, also known as quorums [41].
The protocol bootstraps with a hard-coded list of initial replicas. Each node requests a different list of
replicas, also called a unique node list (UNL), and waits until a quorum, which represents at least 80%
of this list, answers. It also requires minimal connectivity and an intersection size among UNLs that
represents at least 20% of each UNL. However, there has been a debate wether the assumptions of the
Ripple consensus were suffient to implement consensus. In particular, the intersection property alone
was shown insufficient to solve consensus and that stricly more than 40% was actually required [2].
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7.3.2 The Hyperledger fabric

IBM is a key partner in the Hyperledger project [12], a recent industry-wide collaborative effort to
develop an open-source blockchain. Although the current version of the Hyperledger codebase (v0.6)
features a naive consensus approach relying on a central server for testing purpose, the next generation
of Hyperledger, is expected to feature the practical fault tolerant Byzantine protocol [13] and a variant
of Apache Kafka9. PBFT [13] and Kafka are being implemented as modular consensus protocol one
can plug to Hyperledger. Hyperledger also features a subledger abstraction that allows partners to
collaborate within a consortium blockchain without revealing the content of the blockchain to other
users.

7.3.3 The R3 Consortium

We experimented a distributed system running Ethereum in similar settings as R3, a consortium of
more than 70 world-wide financial institutions. In January 2016, R3 consisted of eleven banks and suc-
cessfully collaborated in deploying an Ethereum private chain to perform transactions.10 Since then, R3
has grown and kept experimenting Ethereum11 and other technologies while the concept of consortium
private chain gained traction for its ability to offer a blockchain system among multiple companies in
a private and controlled environment. R3 has just released their own Corda framework. As opposed
to a fully private chain scenario, the consortium private chain involves different institutions possibly
competing among each other. As they can be located at different places around the world, they typi-
cally use Internet to communicate. The R3 consortium has been experimenting Ethereum since more
than half a year now and our discussion with the R3 consortium indicated that they did not investigate
the dependability of the GHOST consensus protocol. The Balance attack was demonstrated in the R3
testbed setting [34] but R3 also worked with various blockchain approaches including Ripple, Axoni
and Symbiont. At the time of writing, R3 has just released Corda [10] as a proposed solution for private
chains. Corda does not yet recommend a particular consensus protocol but mentions Byzantine fault
tolerance consensus algorithms and favors modularity by allowing to plug any consensus protocol
instead [10].

7.4 The Red Belly Blockchain

Recently, a new blockchain appeared particularly promising, the Red Belly Blockchain.12 It relies
on the Democratic BFT [15] that solves the Blockchain Byzantine Consensus problem (Definition 4).
Because it does not rely on an off-the-shelf classic Byzantine consensus algorithm, the Red Belly
Blockchain already scales to more than 100 consensus participants and handle a workload of more
than 400 thousand transactions per second, hence tolerating a potentially much larger number of
blockchain participants issuing transactions and requesting balances than existing blockchains. In
contrast with other large-scale blockchains, the Red Belly Blockchain achieves fast settlement (typically
within 3 seconds) because it does not need any proof-of-work. Finally, an interesting aspect of the
Red Belly Blockchain is its difference with consortium blockchains listed above, whose consortium is
typically static. The Red Belly Blockchain offers a dynamic consortium that works through cooptation:
the current consortium members decide upon proposed consortium changes and, once decided, the
new consortium takes over the responsibility of participating in further consensus instances to decide
upon blocks or new consortia. With this model, any participant of the blockchain can eventually

9https://kafka.apache.org.
10http://www.ibtimes.co.uk/r3-connects-11-banks-distributed-ledger-using-ethereum-

microsoft-azure-1539044.
11http://www.coindesk.com/r3-ethereum-report-banks/.
12http://poseidon.it.usyd.edu.au/˜concurrentsystems/rbbc/.
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become a consensus participants in charge of deciding.

8 Conclusion

While the blockchain technology is reshaping ownership tracking through distributed ledgers, it re-
mains difficult for blockchain users to understand the guarantees this technology has to offer. This
paper describes the causes of this difficulty in mainstream proof-of-work blockchain systems, namely
Bitcoin and Ethereum. One cause is the probabilistic nature of its consensus algorithms: although it
appears that one should wait longer to increase the probability of agreement in case of network delays,
most applications rely on a fixed predicate to define the termination of consensus. Another cause is
that users have started deploying blockchain protocols in either a private or a consortium context, often
involving fewer miners with a different distribution of the mining power and where network delays
can be artificially introduced.

While the recent redefinition of the consensus problem in the context of blockchain helps address-
ing the major tradeoff between consistency and performance, it is crucial to design new provable algo-
rithms especially tailored for blockchains and validate them through large-scale experimentations.
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[15] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
(leader/randomization/signature)-free byzantine consensus for consortium blockchains.
Technical Report 702.03068v2, arXiv, Feb 2017.

[16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew
Miller, Prateek Saxena, Elaine Shi, Emin Gun Sirer, Dawn Song, and Roger Wattenhofer. On
scaling decentralized blockchains, February 2016.

[17] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In Proc.
of the IEEE International Conference on Peer-to-Peer Computing, pages 1–10, 2013.

[18] Ittay Eyal, Adem Efe Gencer, Emin Gn Sirer, and Robbert van Renesse. Bitcoin-NG: A scalable
blockchain protocol. In 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 45–59, 2016.

[19] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial
Cryptography and Data Security - 18th International Conference, FC 2014, Christ Church, Barbados,
March 3-7, 2014, Revised Selected Papers, pages 436–454, 2014.

[20] Hal Finney. Finney’s attack, February 2011.

[21] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consen-
sus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[22] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analy-
sis and applications. In Proceedings of the 34th Annual International Conference on the Theory and
Applications of Cryptographic Technique (EUROCRYPT), pages 281–310, 2015.
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