
Polygraph: Accountable Byzantine Agreement?

Pierre Civit
University of Sydney
Sydney, Australia

pierrecivit@gmail.com

Seth Gilbert
NUS

Singapore, Singapore
seth.gilbert@comp.nus.edu.sg

Vincent Gramoli
University of Sydney
Sydney, Australia

vincent.gramoli@sydney.edu.au

Abstract—In this paper, we introduce Polygraph, the first
accountable Byzantine consensus algorithm. If among n users
t < n/3 are malicious then it ensures consensus; otherwise (if
t ≥ n/3), it eventually detects malicious users that cause disagree-
ment. Polygraph is appealing for blockchain applications as it
allows them to totally order blocks in a chain whenever possible,
hence avoiding forks and double spending and, otherwise, to
punish (e.g., via slashing) at least n/3 malicious users when
a fork occurs. This problem is more difficult than perhaps it
first appears. One could try identifying malicious senders by
extending classic Byzantine consensus algorithms to piggyback
signed messages. We show however that to achieve accountability
the resulting algorithms would then need to exchange Ω(κ2 ·n5)
bits, where κ is the security parameter of the signature scheme.
By contrast, Polygraph has communication complexity O(κ ·n4).
Finally, we implement Polygraph in a blockchain and compare it
to the Red Belly Blockchain to show that it commits more than
10,000 Bitcoin-like transactions per second when deployed on 80
geodistributed machines.

I. INTRODUCTION

Over the last several years we have seen a boom in the
development of new Byzantine agreement protocols, in large
part driven by the excitement over blockchains and cryptocur-
rencies. Unfortunately, Byzantine agreement protocols have
some inherent limitations: it is impossible to ensure correct
operation when more than 1/3 of the processing power in the
system is controlled by a single malicious party, unless the
network can guarantee perfect synchrony in communication.
At first, one might hope to relax the liveness guarantees,
while always ensuring safety. Alas, in a partially synchronous
network, this type of guarantee is impossible. If the adversary
controls more than 1/3 of the computing power, it can always
force disagreement.

Accountability. What if, instead of preventing bad behavior
by a party that controls too much power, we guarantee
accountability, i.e., we can provide irrefutable evidence of
the bad behavior and the identifier of the perpetrator of
those illegal actions? Much in the way we prevent crime in
the real world, we can prevent bad blockchain behavior: if
the attacker has strictly less than 1/3 of the network under
their control then consensus is reached, otherwise we record
sufficient information to catch the third of the network that
is criminal and take remedial actions. Accountability has been
increasingly discussed as a desirable property in blockchains to

? A brief announcement of an earlier version of this paper appeared in
DISC’20 [14] and was presented at the non-archiving workshop VDS’19 [13].

Algorithm Msgs Bits Account.

PBFT [10] O(n3) O(κ · n4) 7
Tendermint [6] O(n3) O(κ · n3) 7

HotStuff [36] O(n2) O(κ · n2) 7
HotStuff w/o thres. sig. [22] O(n2) O(κ · n3) 7
DBFT binary consensus [15] O(n3) O(n3) 7

DBFT multivalue consensus [15] O(n4) O(n4) 7

Polygraph (Sect. V) O(n3) O(κ · n4) 3
Multivalue Polygraph (Sect. VI) O(n4) O(κ · n4) 3

TABLE I: Differences in communication complexities af-
ter global stabilization time between Polygraph and non-
accountable Byzantine consensus algorithms, where n is the
number of consensus participants and κ is the security param-
eter of the corresponding encryption scheme.

slash stake of cheating peers [8], [33]. The problem is to avoid
suspecting correct peers while provably identifying cheating
ones.

Why is it a hard problem? As far as we know, there is
no generic way of getting definitive evidence of the guilt of
processes (or nodes) for all systems. Previous work introduced
a method to transform any distributed system into one that is
accountable but it only guarantees that faulty processes will be
suspected forever if the network is partially synchronous [19].
We thus narrow down the problem to accountable Byzantine
agreement, specifically reaching agreement when there are
fewer than n/3 Byzantine participants or detecting at least
n/3 Byzantine participants in case of a disagreement. Most
partially synchronous Byzantine consensus protocols, like
PBFT [10], Tendermint [7] or HotStuff [36], already collect
forms of cryptographic evidence like signatures or certificates
to guarantee agreement upon a decision. So one might think
of simply recording the quorum certificates containing honest
processes signatures that attest the decision to detect n/3
Byzantine processes in case of disagreement. In fact, we
show that justifications should contain at least Ω(κ · n2) bits
(where κ is the security parameter of the signature scheme)
for a simple piggybacking extension to make any of these
algorithms accountable (see Theorem IV.3).

Results. In this paper, we propose Polygraph, the first ac-
countable Byzantine agreement solution. The idea is to offer
accountability guarantees to the participants of the service.
Intuitively, one cannot hold n servers accountable to sepa-

1

rate clients (distinct from the servers) that interact with the
blockchain when more than t ≥ 2n/3 of the servers are
Byzantine. The reason is that the coalition is sufficiently
large to rewrite the blockchain and prevent a client from
distinguishing the response of honest servers from the response
of malicious servers [12]. This was confirmed by concurrent
research to ours that showed it is impossible to hold servers
accountable to separate clients for any number of Byzantine
participants [34].

Our solution, called Polygraph, ensures that in a symmetric
system where all n participants are peers that take part as
clients and servers in the accountable Byzantine consensus,
then accountability is ensured for any number t ≤ n of
Byzantine participants. Note that the problem is trivial when
t > n − 2 as no disagreement among correct processes is
possible, but otherwise Polygraph guarantees all honest par-
ticipants undeniably detect at least n/3 Byzantine participants
responsible for disagreement. Because it is resilient to any
number of failures, Polygraph is particularly interesting for
peer-to-peer blockchain networks. In particular, it allows to
hold all peers accountable to other peers, which is appealing
for consortium blockchains and shard chains [18].

We also show that Polygraph is optimal in that stronger
forms of accountability are impossible. For example, we
cannot guarantee agreement when t > n/3, even if we are
willing to tolerate a failure of liveness (Theorem IV.1); and
processes cannot detect even one guilty participant within a
fixed time limit (e.g., prior to decision), since (intuitively)
that would enable processes to determine guilt before deciding
in a way that leads to disagreement. Nor can we guarantee
detection of more than n/3 malicious users, since it takes
only n/3 malicious users to cause disagreement and additional
malicious users could simply stay mute to not be detected.

Finally, we show that Polygraph is efficient. First, its
communication complexity is O(κ · n4) bits, where n is
the number of participants and κ is the security parameter
of its signature scheme. This complexity is comparable to
the communication complexity of state-of-the-art consensus
algorithms as depicted in Table I because Polygraph simply
needs to exchange signed messages received within at most
the two latest previous asynchronous rounds. In particular,
both the binary and the multivalue versions of Polygraph
share the same asymptotic complexity as PBFT, which does
not offer accountability. Second, we evaluate the performance
of Polygraph in a blockchain application that thus becomes
accountable. We deploy this blockchain application on 80
machines across continents and compare its performance to
the Red Belly Blockchain [16]. Even though it presents some
overheads compared to this non-accountable baseline, our
accountable blockchain still exceeds 10,000 TPS at 80 nodes.
This high performance can be attributed to the reasonable
complexity of the multivalue variant of Polygraph depicted
in Table I.

Roadmap. The background is given in Section II. The model
and the accountable Byzantine consensus problem are pre-

sented in Section III, and impossibility results are given in
Section IV. Section V describes the Polygraph protocol, which
solves the accountable binary Byzantine consensus problem
while Section VI generalizes the algorithm to arbitrary values.
Section VII analyses empirically the Polygraph protocol in
a geodistributed blockchain. blockchain. Section VIII makes
general observations and Section IX concludes. The full proofs
are deferred to our companion technical report [12].

II. BACKGROUND AND RELATED WORK

In this section, we review existing work on accountability
in distributed systems.

A. PeerReview

Haeberlen, Kuznetsov, and Druschel [19] pioneered the idea
of accountability in distributed systems. They developed a
system called PeerReview that implemented accountability as
an add-on feature for any distributed system. Each process
in the system records messages in tamper-evident logs; an
authenticator can challenge a process, retrieve its logs, and
simulate the original protocol to ensure that the process
behaved correctly. They show that in doing so, you can always
identify at least one malicious process (if some process acts in
a detectably malicious way). Their technique is quite powerful,
given its general applicability which can be used in any
(deterministic) distributed system!

The issue has to do with (partial) synchrony. The PeerRe-
view approach is challenge-based: to prove misbehavior, an
auditor must receive a response from the malicious process. If
no response is received, the auditor cannot determine whether
the process is malicious, or whether the network has not yet
stabilized. It follows that the malicious coalition will only be
suspected forever but not proved guilty. There is no fixed point
at which the auditor can be completely certain that the sender
is malicious; the auditor may never have definitive proof that
the process is malicious; it always might just be poor network
performance. The Polygraph Protocol, by contrast, produces a
concrete proof of malicious behavior that is completely under
the control of the honest processes.

B. Accountable blockchains

Recently, accountability has been an important goal in
“proof-of-stake” blockchains, where users that violate the
protocol can be punished by confiscating their deposited stake.

Buterin and Griffith [8] have proposed a blockchain proto-
col, Casper, that provides this type of accountability guarantee.
Validators try to agree on (or “finalize”) a branch of k hundreds
of consecutive blocks, by gathering signatures for this branch
or “link” from validators jointly owning at least 2n/3 of
the deposited stake. If a validator signs multiple links at the
same height, Casper uses its signatures as proofs to slash its
deposited stake. This is very similar in intent to Polygraph’s
notion of identifying n/3 malicious users when there is dis-
agreement. Like most blockchain protocols, however, Casper
implicitly assumes some synchronous underlying (overlay)
network and allows the blockchain to fork into a tree until

2

some branch is finalized. To guarantee “plausible liveness” or
that Casper does not block when not enough signatures are
collected to finalize a link, validators are always allowed to
sign links that overlap but extend links they already signed.
However, this does not guarantee that consensus terminates.

The longlasting blockchain [33] builds upon our companion
technical report [12] to recover from forks by excluding guilty
participants and compensating transient losses with the deposit
of guilty participants. It recovers from f = d2n/3e−1 failures
as long as there are less than min(n/3, n − f) processes
experiencing benign (e.g., crash) failures. Accountability in
the context of blockchain fairness was raised by Herlihy and
Moir in a keynote address [21], and the idea of “accountable
Byzantine fault tolerance” has been discussed [6]. The goal in
the latter case is to suggest a broadcast after the consensus
in order to detect a fault by matching pre-vote and pre-
commit messages of the same validator in Tendermint, but
the algorithm is not detailed. Holding n servers accountable to
separate clients in the Tendermint consensus algorithm [4], [7]
as well as HotStuff [36] was shown possible when t < 2n/3 in
recent research [34] but could not be achieved when t ≥ 2n/3,
which confirms our previous observations [12].

C. Earlier work on accountability

Even before PeerReview, others had suggested the idea of
accountability in distributed systems as an alternate approach
to security (see, e.g., [27], [37], [38]). Yumerefendi and
Chase [38] developed an accountable system for network
storage, and Michalakis et al. [31] developed an account-
able peer-to-peer content distribution network. The idea of
accountability appeared less explicit in many earlier systems.
For example, Aiyer et al. [3] proposed the BAR model for
distributed systems, which relied on incentives to ensure good
behavior; one key idea was in detecting and punishing bad
behaviors. Finally, Intrusion Detection Systems (e.g., [17],
[23], [29] provided heuristics and techniques for detecting
malicious behaviors in a variety of different systems.

D. Failure detectors

There is a connection between accountability and failure de-
tectors. A failure detector is designed to provide each process
in the system with some advice, typically a list of processes
that are faulty in some manner. However, failure detectors
tend to have a different set of goals. They are used during
an execution to help make progress, while accountability is
usually about what can be determined post hoc after a problem
occurs. They provide advice to a process, rather than proofs
of culpability that can be shared. Most of the work in this
area has focused on detecting crash failures (see, e.g., [11]).
There has been some interesting work extending this idea to
detecting Byzantine failures [19], [20], [24], [29]. Malkhi and
Reiter [29] introduced the concept of an unreliable Byzantine
failure detector that could detect quiet processes, i.e., those
that did not send a message when they were supposed to. They
showed that this was sufficient to solve Byzantine Agreement.

Kihlstrom, Moser, and Melliar-Smith [24] continue this di-
rection, considering failures of both omission and commission.
Of note, they define the idea of a mutant message, i.e., a
message that was received by multiple processes and claimed
to be identical (e.g., had the same header), but in fact was
not. The Polygraph Protocol is designed so that only malicious
users sending a mutant message can cause disagreement. In
fact, the main task of accountability in this paper is identifying
processes that were supposed to broadcast a single message
to everyone and instead sent different messages to different
processes.

Maziéres and Shasha propose SUNDR [30] that detects
Byzantine behaviors in a network file system if all clients
are honest and can communicate directly. Polygraph clients
request multiple signatures from servers so that they do not
need to be honest. Li and Maziéres [28] improves on SUNDR
with BFT2F, a weakly consistent protocol when the number
of failures is n/3 ≤ t < 2n/3 and its BFTx variant that copes
with more than 2n/3 failures but does not guarantee liveness
even with less than t failures.

III. MODEL AND PROBLEM

We first define the problem in the context of a traditional
distributed computing setting. (We later discuss applications
to blockchains.)

System. We consider n processes. A subset C of the processes
are honest, i.e., always follow the protocol; the remaining t <
n are Byzantine, i.e., may maliciously violate the protocol,
under the control of a dynamic adversary that fixes the set of
Byzantine processes for the duration of each round. We define
t0 = max(t ∈ N0 : t < n/3), i.e., t0 = dn3 e − 1, a useful
threshold on the number of Byzantine behaviors.

Processes execute one step at a time and are asynchronous,
proceeding at their own arbitrary, unknown speed. We assume
local computation time is zero, as it is negligible with respect
to message delays.

We assume that there is an idealized PKI (public-key
infrastructure) so that each process has a public/private key
pair that it can use to sign messages and to verify signatures.

Partial synchrony. We consider a partially synchronous net-
work. During some intervals of time, messages are delivered
in a reliable and timely fashion, while in other intervals of
time messages may be arbitrarily delayed. More specifically,
we assume that there is some time τGST known as the global
stabilization time, unknown to the processes, such that any
message sent after time τGST will be delivered with latency
at most d. We say that an event occurs eventually if there exists
an unknown but finite time when the event occurs. (Note that
we tolerate that messages be dropped before τGST as long as
messages are sent infinitely often.) For the sake of simplicity
in the presentation, we write “receive k messages” to explain
“receive messages from k distinct processes”.

Verification algorithm. A verification algorithm V takes as
input the state of a process and returns a set G of undeniable
guilty processes, that is, every process-id of G is tagged with

3

an unforgeable proof of culpability. (More formally, this means
that for every computationally bounded adversary, for every
execution in which a process pj is honest, for every state s
generated during the execution or constructed by Byzantine
users, the probability that the verification algorithm returns a
set containing pj is negligible. In practice, this will reduce to
the non-forgeability of signatures.)

Accountable Byzantine agreement. The problem of Byzan-
tine Agreement, first introduced by Pease, Shostak, and Lam-
port [26], assumes that each process begins with a binary input,
i.e., either a 0 or a 1, outputs a decision, and requires three
properties: agreement, validity, and termination.

We define the Accountable Byzantine Agreement problem
in a similar way, with the additional requirement that there
exists a verification algorithm that can identify at least t0 + 1
Byzantine users whenever there is disagreement. (Recall that
t0 = dn3 e − 1.) More precisely:

Definition 1 (Accountable Byzantine Agreement). We say that
an algorithm solves Accountable Byzantine Agreement if each
process takes an input value, possibly produces a decision,
and satisfies the following properties:
• Agreement: If t ≤ t0, then every honest process that

decides outputs the same decision value.
• Validity: If all processes are honest and begin with the

same value, then that is the only decision value.
• Termination: If t ≤ t0, every honest process eventually

outputs a decision value.
• Accountability: There exists a verification algorithm V

such that: if two honest processes output disagreeing
decision values, then eventually for every honest process
pj , for every state sj reached by pj from that point
onwards, the verification V (sj) outputs a guilty set of
size at least t0 + 1.

Our validity definition is sometimes called weak valid-
ity [32], but our companion technical report [12] shows that
our accountable binary Byzantine consensus protocol ensures
even a stronger validity property (if t ≤ t0 and an honest
process decides v, then some honest process proposed v).

IV. IMPOSSIBILITY RESULTS

It may seem that accountability can be obtained by always
guaranteeing agreement but failing to terminate as soon as
t ≥ n/3, by checking evidence before deciding, or by
piggybacking a subquadratic number of bits as justifications
in classic consensus algorithms. In this section, we show that
none of these ideas lead to accountability.

A. Avoiding disagreement when t ≥ n/3 is impossible

A couple of natural questions arise regarding accountable
algorithms: Can we design an algorithm that always guarantees
agreement, and simply fails to terminate if there are too many
Byzantine users? If so, we would trivially get accountability!
Can we design an algorithm that provides earlier evidence of
Byzantine behavior, even before the decision is possible? If
so, we could provide stronger guarantees than are provided in

this paper. Alas, neither is possible. One can find the details
of the following theorems in our companion technical report.

Theorem IV.1. In a partially synchronous system, no al-
gorithm solves both the Byzantine consensus problem when
t < n/3 and the agreement and validity of the Byzantine
consensus problem when t > t0.

We say that a verification algorithm V is swift if it guarantee
the following: assume pi has already decided some value v,
and that pj is in a state s wherein it will decide w 6= v in
its next step; then V (s) 6= ∅. Notice that a swift verification
algorithm may only detect one Byzantine process (i.e., it is
not sufficient evidence for pj to decide never to decide).

Theorem IV.2. Consider an algorithm that solves consensus
when t < n/3. There is no swift verification algorithm when
t > t0.

B. Classic PBFT-like algorithms

It is interesting to see that most partially synchronous
consensus algorithms already collect forms of cryptographic
evidence like signatures or certificates to guarantee agreement
upon decision. While this is a characteristic of PBFT [10], this
is the case of modern algorithms that build upon it including
Tendermint [7] and HotStuff [36]. One could naturally be
tempted to reuse these signatures and certificates to piggy-
back practical justifications in the existing messages of the
original consensus algorithms to turn them into accountable
consensus algorithms. Although threshold signatures do not
convey enough information to identify which process is guilty,
signatures are generally sufficient. We show below that, un-
fortunately, this transformation cannot work.

The intuition of the proof is split in the four following steps
while the full proof is deferred to our technical report. First,
we define the class of ‘classic’ or PBFT-like consensus algo-
rithms and denote it L. Second, we show that HotStuff [36],
PBFT [10] and Tendermint [4] belong to this class L. (As we
need to remove threshold signatures, we adopt the version of
HotStuff without threshold signatures [22].) Third, we define
a practical extension of PBFT-like consensus algorithms that
piggybacks messages. By ‘practical’ we mean that piggy-
backed messages have a bounded staleness to prevent the
justification communication to be superlinear (e.g., quadratic)
in n. Finally, we prove that there exist executions leading to
disagreement with different sets of Byzantine processes that
correct processes cannot distinguish.

(1) Class L of PBFT-like algorithms. L contains algorithms
that all rely on a leader, which rotates in a round-robin fashion
across views and proposes a suggestion in its view. Two local
variables per process, preparation and decision , have values
that relate with each other such that for a process j to have
a decision , n − t0 processes, including j itself, must have
had the same value as a preparation . During view changes,
if t < t0, then a preparation implies a propagation of a value
to the leader within messages announcing the new view.

4

(2) HotStuff, PBFT and Tendermint belong to L. By
examination of the code of HotStuff, PBFT and Tendermint,
we can see that they all belong to L. HotStuff’s leader, PBFT’s
primary and Tendermint’s proposer of an epoch all aim at
proposing a suggestion within the view they coordinate. A
decision value always requires the same preparation value
from n − t0 distinct processes. These two values correspond
to HotStuff’s commitQC and prepareQC, to Tendermint’s
decision and validValue, and to PBFT’s commit and prepare.
In all these three consensus algorithms, a suggestion value in
view v + 1 must be proposed by its leader and correspond to
a preparation motivated by n− t0 messages sent in view v.

(3) Extensions of a PBFT-like algorithm. The t0-bounded ex-
tension of a PBFT-like consensus algorithm A is an algorithm
Ā like A except that it piggybacks a justification within all
its new-view and suggestion messages at each view vk = k.
This justification consists of a chain of the past alternating
sets Suggx of suggestion messages sent by the leader `vx of
view vx = x and sets NV x of new-view messages sent by
processes φx for view vx. Each piggybacked chain sent in
view vk has a bounded depth t0 − 1 = Θ(n), which means
that it contains a (possibly empty) suffix of this sequence of
sets: NV k−(t0−1),Suggk−(t0−2),NV k−(t0−2), · · · ,Suggk−1,
NV k−1.

Theorem IV.3. HotStuff, PBFT and Tendermint as well as
all their t0-bounded extensions are not accountable.

(4) Intuition of the proof. For the proof we consider two
executions e1 and e2, in which process i decides si at view
vi while process j decides sj 6= si at view vj >> vi. Process
i’s decision implies preparation of si by a quorum Qi at view
vi. In a later view numbered vz , a set φ of processes send a
set NV vz−1 of new-view messages to the leader `vz of this
view. A set B = φ ∩ Qi of at least t0 + 1 guilty processes
did not propagate their preparation of si and provoked the
disagreement. The view vz is the first link of a chain of
successive views χ = [vz, vz + 1, . . . , vz + k − 1] where the
leaders of views χ are in P , |P | ≤ t0 − 1. At view vz + k,
process j prepares sj and eventually decides sj at view
vj ≥ vz + k. When i and j detect the disagreement, they can
neither distinguish e1 from e2 nor identify the senders φ of
NV vz−1. Process j cannot wait without deciding because we
can construct an execution e0 indistinguishable by j from e1

with less than t0 Byzantine processes, where the leaders P
(and i) of the chain χ appear mute to j and where j must
decide. Leaders of P prepare sj as j ignores the decision
si. After the disagreement, P does not reveal NV vz−1 that
is necessary to detect the guilty processes. This argument
holds as long as k < t0. The full proof is deferred to the
companion technical report.

This result (Theorem IV.3) simply shows that piggybacking
t0-bounded justifications is insufficient to make PBFT-like
algorithms accountable, however, it does not mean that they

cannot be transformed into an accountable algorithm. First,
one could probably make PBFT-like algorithms accountable
with a longer justification, exchanging Ω(κ · n2) times more
bits, where κ is the security parameter of the signature
scheme. This new extension would result in an accountable
version of Tendermint, HotStuff and PBFT requiring between
Ω(κ2 · n5) and Ω(κ2 · n6) bits. Second, transforming any
of these algorithms into Polygraph (Section V) is a way of
obtaining accountability with a lower complexity than the
previous extension. Such a transformation would however be
non-trivial because Polygraph relies on DBFT that differs
from PBFT-like algorithms in various ways: every process
participating in DBFT can propose a value, DBFT is signature-
free and there is no view change in DBFT as there is no need
to recover from a failed leader.

V. POLYGRAPH, AN ACCOUNTABLE BYZANTINE
CONSENSUS ALGORITHM

In this section, we introduce Polygraph, a Byzantine agree-
ment protocol that is accountable. We begin by giving the
basic outline of the protocol for ensuring agreement when
t < n/3. The protocol is derived from the DBFT consensus
algorithm [15] that was proved correct using the ByMC model
checker [35] and that does not use the leader-based pattern
mentioned in the proof of Theorem IV.3. Then, we focus on
the key aspects that lead to accountability, specifically, the
“ledgers” and “certificates.” For the sake of simplicity, this
section tackles the binary agreement, however, the general-
ization of this result to arbitrary values as well as the proof
that the algorithm is correct can be found in the companion
technical report.

As a notation, we indicate that a process pi sends a message
to every other process by: broadcast(TAG ,m)→ messages ,
where TAG is the type of the message, m is the message
content, and messages is the location to store any messages
received.

Throughout we assume that every message is signed by
the sender so the receiver can authenticate who sent it. (Any
improperly signed message is discarded.) Thus we can identify
messages sent by distinct processes. Similarly, the protocol
will at times include cryptographically signed “ledgers” in
messages; again, any message that is missing a required ledger
or has an improperly formed ledger is discarded. (See the
discussion below regarding ledgers.)

A. Protocol overview

The basic protocol operates in two phases, after which a
possible decision is taken. Each process maintains an estimate.
In the first phase, each process broadcasts its estimate using
a reliable broadcast service, bv-broadcast (discussed below),
as introduced previously [1]. The protocol uses a rotating
coordinator; whoever is the assigned coordinator for a round
broadcasts its estimate with a special designation.

All processes then wait until they receive at least one mes-
sage, and until a timer expires. (The timeout is increased with
each iteration, so that eventually once the network stabilizes

5

Algorithm 1 The Polygraph Protocol
1: bin-propose(vi):
2: esti = vi
3: ri = 0
4: timeouti = 0
5: ledgeri [0] = ∅
6: repeat:
7: ri ← ri + 1; � increment the round number and the timeout
8: timeouti ← timeouti + 1
9: coordi ← ((ri − 1) mod n) + 1 � rotate the coordinator

. Phase 1:
10: bv-broadcast(EST[ri], esti, ledger i[ri − 1], i, bin valuesi[ri]) � binary value broadcast the current estimate
11: if i = coordi then � coordinator rebroadcasts first value received
12: wait until (bin valuesi [ri] = {w}) � bin values stores messages received by binary value broadcast

13: broadcast(COORD[ri], w)→ messagesi
14: StartTimer(timeouti) � reset the timer
15: wait until (bin valuesi [ri] 6= ∅ ∧ timer i expired)

. Phase 2:
16: if (COORD[ri], w) ∈ messagesi from pcoordi

∧ w ∈ bin valuesi[ri]) then � favor the coordinator
17: aux i[ri]← {w}
18: else aux i[ri]← bin valuesi[ri] � otherwise, use any value received

19: signaturei = sign(aux i[ri], ri, i) � sign the messages
20: broadcast(ECHO[ri], aux i[ri], signaturei)→ messagesi � broadcast second phase message
21: wait until valuesi = ComputeValues(messagesi, bin valuesi[ri], aux i[ri]) 6= ∅

. Decision phase:
22: if valuesi = {v} then � if there is only one value, then adopt it
23: esti ← v
24: if v = (ri mod 2) then � decide if value matches parity
25: if no previous decision by pi then decide(v)

26: else
27: esti ← (ri mod 2) � otherwise, adopt the current parity bit

28: ledger i[ri] = ComputeJustification(valuesi , esti , ri , bin valuesi [ri],messagesi) � broadcast certificate

Rules:
1) Every message that is not properly signed by the sender is discarded.
2) Every message that is sent by bv-broadcast without a valid ledger after Round 1, except for messages containing value 1 in Round 2, are discarded.
3) On first discovering a ledger ` that conflicts with a certificate, send ledger ` to all processes.

it is long enough.) If a process receives a message from the
coordinator, then it chooses the coordinator’s value to “echo”,
i.e., to rebroadcast to everyone in the second phase. Otherwise,
it simply echoes all the messages received in the first phase.

At this point, each process pi waits until it receives enough
compatible ECHO messages. Specifically, it waits to receive at
least (n− t0) messages sent by distinct processes where every
value in those messages was also received by pi in the first
phase. In this case, it adopts the collection of values in those
(n − t0) messages as its candidate set. In fact, if a process
pi receives a set of (n− t0) messages that all contain exactly
the coordinator’s value, then it chooses only that value as the
candidate value.

Finally, the processes try to come to a decision. If process
pi has only one candidate value v, then pi adopts that value v
as its estimate. In that case, it can decide v if it matches the
parity of the round, i.e., if v = ri mod 2. Otherwise, if pi has
more than one candidate value, then it adopts as its estimate
ri mod 2, the parity of the round.

To see that this ensures agreement (when t < n/3), consider
a round in which some process pi decides value v = ri
mod 2. Since pi receives (n − t0) echo messages containing
only the value v, we know that every honest process must
have value v in every possible set of (n− t0) echo messages,
and hence every honest process included v in its candidate

set. Every honest process that only had v as a candidate also
decided v. The remaining honest processes must have adopted
v = ri mod 2 as their estimate when they adopted the parity
bit of the round. And if all the honest processes begin a round
r with estimate v, then that is the only possible decision due to
the reliable broadcast bv-broadcast in Phase 1 (see below) and
all honest processes decide at round r+2 or earlier (regardless
of whether τGST is reached).

Processes always continue to make progress, if t < n/3.
Termination is a consequence of the coordinator: eventually,
after GST when the network stabilizes, there is a round
where the coordinator is honest and the timeout is larger
than the message delay. At this point, every honest process
receives the coordinator’s Phase 1 message and echoes the
coordinator’s value. In that round, every honest process adopts
the coordinator’s estimate, and the decision follows either in
that round or the next one (if t < n/3).

B. Binary value broadcast

The protocol relies in Phase 1 on a reliable broadcast routine
bv-broadcast proposed before [1], which is used to ensure
validity, i.e., any estimate adopted (and later decided) must
have been proposed by some honest process. Moreover, it
guarantees that if every honest process begins a round with
the same value, then that is the only possible estimate for

6

Algorithm 2 Helper Components
1: bv-broadcast(MSG, val, ledger, i, bin values):
2: broadcast(BVAL, 〈val, ledger, i〉)→ msgs � broadcast message
3: After round 2, and in round 1 if val = 0, discard all messages received without a proper ledger.
4: upon receipt of (BVAL, 〈v, ·, j〉)
5: if (BVAL, 〈v, ·, ·〉) received from (t0 + 1) distinct processes and (BVAL, 〈v, ·, ·〉) not yet broadcast then
6: Let ` be any non-empty ledger received in these messages. � one of the received ledgers is enough
7: broadcast(BVAL, 〈v, `, j〉) � Echo after receiving (t0 + 1) copies.
8: if (BVAL, 〈v, ·, ·〉) received from (2t0 + 1) distinct processes then
9: Let ` be any non-empty ledger received in these messages. � one of the received ledgers is enough

10: bin values ← bin values ∪ {〈v, `, j〉} � deliver after receiving (2t0 + 1) copies

11: ComputeValues(messages, b set , aux set): � check if there are n− t0 compatible messages
12: if ∃S ⊆ messages where the following conditions hold:
13: (i) S contains (n− t0) distinct ECHO[ri] messages
14: (ii) aux set is equal to the set of values in S.
15: then return(aux set)
16: if ∃S ⊆ messages where the following conditions hold:
17: (i) S contains (n− t0) distinct ECHO[ri] messages
18: (ii) Every value in S is in b set .
19: then return(V = the set of values in S)
20: else return(∅)

21: ComputeJustification(valuesi , esti , ri , bin valuesi ,messagesi): � compute ledger and broadcast certificate
22: if esti = (ri mod 2) then
23: if ri > 1 then
24: ledgeri[ri]← ledger ` where (EST[ri], 〈v, `, ·〉) ∈ bin valuesi

25: else ledgeri[ri]← ∅
26: else ledgeri[ri]← (n− t0) signed messages from messagesi containing only value esti

27: if valuesi = {(ri mod 2)}∧ no previous decision by pi in previous round then
28: certificatei ← (n− t0) signed messages from messagesi containing only value esti
29: broadcast(esti, ri, i, certificatei) � transmit certificate to everyone
30: return ledgeri[ri]

the remainder of the execution (if t < n/3). Specifically,
bv-broadcast guarantees the following critical properties while
t < n/3: (i) every message broadcast by t0 + 1 honest
processes is eventually delivered to every honest process; (ii)
every message delivered to an honest process was broadcast
by at least t+ 1 processes. The proof details can be found in
the companion technical report.

These properties are ensured by a simple echo procedure.
When a process first tries to bv-broadcast a message, it
broadcasts it to everyone. When a process receives t0 + 1
copies of a message, then it echoes it. When a process receives
n − t0 copies of a message, then it delivers it. Notice that if
a message is not bv-broadcast by at least t0 + 1 processes,
then it is never echoed and hence never delivered. And if a
message is bv-broadcast by t0+1 (honest) processes is echoed
by every honest process and hence delivered to every honest
process.

This reliable broadcast routine ensures validity, since a
Phase 1 message that is echoed in Phase 2 must have
been delivered by bv-broadcast, and hence must have been
bv-broadcast by at least one honest process.

C. Ledgers and certificates

In order to ensure accountability, we need to record enough
information during the execution to justify any decision that
is made, and hence to allow processes to determine account-
ability. For this purpose, we define two types of justifications:
ledgers and certificates. A ledger is designed to justify adopt-
ing a specific value. A certificate justifies a decision. We will

attach ledgers to certain messages; any message containing an
invalid or malformed ledger is discarded.

We define a ledger for round r and value v as follows. If
v 6= rmod 2, then the ledger consists of the (n − t0) ECHO
messages, each properly signed, received in Phase 2 of round r
that contain only value v (and no other value). If v = rmod 2,
then the ledger is simply a copy of any other ledger from the
previous round r− 1 justifying value v. (The asymmetry may
seem strange, but is useful in finding the guilty parties!)

We define a certificate for a decision of value v in round
r to consist of (n− t0) echo messages, each properly signed,
received in Phase 2 of round r that contain only value v (and
no other value).

D. Accountability

We now explain how the ledgers and certificates are used.
In every round, when a process uses bv-broadcast to send
a message containing a value, it attaches a ledger from the
previous round justifying why that value was adopted. (There
is one exception: in Round 1, no ledger will be available to
justify value 1, so no ledger is generated in that case.)

The bv-broadcast ignores the ledger for the purpose of
deciding when to echo a message. When it echoes a message
m, it chooses any arbitrary non-empty ledger that was attached
to a message containing m (if any such ledgers are available).
However, every message that does not contain a valid ledger
justifying its value is discarded, with the following exception:
in Round 2, messages containing the value 1 can be delivered
without a ledger (since no justification is available for adopting
the value 1 in Round 1).

7

Whenever there is only one candidate value received in
Phase 2, a process adopts that value and either: (i) decides and
constructs a certificate, or (ii) does not decide and constructs
a ledger. In both cases, this construction simply relies on the
signed messages received in Phase 2 of that round (and hence
is always feasible).

If a process decides a value v in round r > 1, or adopts
v because it is the parity bit for round r > 1, then it also
constructs a ledger justifying why it adopted that value v. It
accomplishes this by examining all the bv-broadcast messages
received for value v and copying a round r − 1 ledger.
Again, this is always possible since any message that is not
accompanied by a valid ledger is ignored. (The only possible
problem occurs in Round 2 where messages for value 1 are
not accompanied by a ledger; however ledgers for value 1 in
round 2 do not require copying old ledgers.)

E. Proving culpability

How do disagreeing processes decide which processes were
malicious? When a process decides in round r, it sends its
certificate to all the other processes. Any process that decides
a different value in a round > r can prove the culpability of at
least dn/3e Byzantine processes by comparing this certificate
to its logged ledgers. (It can then broadcast the proper logged
ledgers to ensure that everyone can identify the malicious
processes.)

We will say that a certificate (e.g., from p1) and a ledger
(e.g., from p2) conflict if they are constructed in the same
round r, but for different values v and w. That is, both the
certificate and the ledger attest to (n − t0) ECHO messages
from round r sent to p1 and p2 (respectively) that contain only
value v and only value w, respectively. Since every two sets
of size (n−t0) intersect in at least (n−2 ·t0) locations, fixing
t0 = dn/3e − 1 helps identify at least (t0 + 1) processes that
sent different Phase 2 messages in round r to p1 and p2 and
hence they are malicious.

We now discuss how to find conflicting certificates and
ledgers. Assume that process pi decides value v in round r,
and that process pj decides a different value w in a round > r.
(Recall that v is the only possible value that can be decided
in round r.) There are two cases to consider, depending on
whether pj decides in round r + 1 or later.
• Round r+1: If pj decides in round r+1, then value w was

the only candidate value after Phase 2. This implies that
w was received by some bv-broadcast message. Since
r > 1, we know that the message must have contained a
valid ledger ` from round r for value w 6= v. This ledger
` conflicts with the decision certificate of pi.

• Round ≥ r + 2: Since pj decides w 6= v, it does not
decide v in round r + 2. This means that pj has w as
a candidate value, which implies that pj received w in
a bv-broadcast. Since r > 1, we know that the message
must have contained a valid ledger ` from round r + 1
for value w 6= v. This ledger ` consists of a copy of a
ledger from round r for value w which conflicts with the
decision certificate of pi.

In either case, if pj does not decide v, then, by looking at the
messages received in round r + 1 and r + 2, it can identify
a ledger that conflicts with the decision certificate of pi and
hence can prove the culpability of at least t0 + 1 malicious
processes.

F. Analysis of the Polygraph Protocol

We show in the companion technical report that the BV-
broadcast routine provides the requisite properties. This then
allows us to prove the main correctness theorem:

Theorem V.1. The Polygraph Protocol is a correct Byzan-
tine consensus protocol guaranteeing agreement, validity, and
termination.

Accountability follows from the fact that a disagreement
leads every honest process to eventually receive a certificate
and a ledger that conflict:

Theorem V.2. The Polygraph Protocol is accountable.

If all the processes are honest, then the protocol terminates
in O(1) rounds after GST. Otherwise, it may take t+1 rounds
after GST to terminate. Lastly, we bound the message and
communication complexity of the protocol. The number of
rounds depends on when the network stabilizes (i.e., we cannot
guarantee a decision for any consensus protocol prior to GST).
We bound, however, the communication complexity of each
round:

Lemma V.3 (Polygraph Complexity). After τGST , the Poly-
graph protocol has message complexity O(n3) and commu-
nication complexity O(κ · n4), where n is the number of
participants and κ is the security parameter.

Proof. The Polygraph protocol terminates in O(t) rounds after
τGST both to reach consensus or detect processes responsible
for disagreement. As each round executes a bv-broadcast
of O(n2) messages and as t = O(n) we obtain O(n3)
messages. The communication complexity is O(κ · n4) since
each message may contain a ledger of O(n) signatures or
O(κ · n) bits. The remainder of the protocol involves only
O(n2) messages and only O(n3) communication complexity
(e.g., for the coordinator to broadcast its message, and for
processes to send their ECHO messages).

Note that in the good case (after τGST and when t < t0)
Polygraph reaches consensus in three message delays. Sec-
tion VI presents the multivalue generalization of Polygraph.

VI. THE MULIVALUE POLYGRAPH PROTOCOL

In this section, we discuss how to generalize the binary
consensus to ensure accountable Byzantine agreement for
arbitrary values. We follow the approach from [15]: First,
all n processes use a reliable broadcast service to send
their proposed value to all the other n processes. Then, all
the processes participate in parallel in n binary agreement
instances, where each instance is associated with one of the
processes. Lastly, if j is the smallest binary consensus instance

8

to decide 1, then all the processes decide the value received
from process pj .

The key to making this work is that we need the reliable
broadcast service to be accountable, that is, if it violates
the reliable delivery guarantees, then each honest process
has irrefutable proof of the culpability of t + 1 processes.
Specifically, we want a single-use reliable broadcast service
that allows each process to send one message, delivers at most
one message from each process, and guarantees the following
properties:
• RB-Validity: If an honest process RB-delivers a message
m from an honest process pj , then pj RB-broadcasts m.

• RB-Send: If t ≤ t0 and pj is honest and RB-broadcasts
a message m, then all honest processes eventually
RB-deliver m from pj .

• RB-Receive: If t ≤ t0 and an honest process RB-delivers
a message m from pj (possibly faulty) then all honest
processes eventually RB-deliver the same message m
from pj .

• RB-Accountability: If an honest process pi RB-delivers a
message m from pj and some other honest process pj
RB-delivers m′ from pj , and if m 6= m′, then eventually
every process has irrefutable proof of the culpability of
t0 + 1 processes.

The resulting algorithm provides a weaker notion of va-
lidity: if all processes are honest, then the decision value is
one of the values proposed. (A stronger version of validity
could be achieved with a little more care, but is not needed
for blockchain applications that depend on an external validity
condition [16].)

A. Accountable Byzantine agreement

We now present the algorithm in more detail. The general
algorithm has three phases.
• First, in lines 1–8, each process uses reliable broadcast

to transmit its value to all the others. Then, whenever
a process receives a reliable broadcast message from a
process pk, it proposes ‘1’ in binary consensus instance
k. The first phase ends when there is at least one decision
of ‘1’.

• Second, in lines 10–12, each process proposes ‘0’ in every
remaining binary consensus instance for which it has not
yet proposed a value. The second phase ends when every
consensus instance decides.

• Third, in lines 14–16, each process identifies the smallest
consensus instance j that has decided ‘1’. (If there is no
such consensus instance, then it does not decide at all.)
It then waits until it has received the reliable broadcast
message from pj and outputs that value.

B. Reliable broadcast with accountability

We now describe the reliable broadcast service, which is a
straightforward extension of the broadcast protocol proposed
by Bracha [5]. A process begins by broadcasting its message
to everyone. Every process that receives the message directly,
echoes it, along with a signature. Every process that receives

n − t0 distinct ECHO messages, sends a READY message.
And if a process receives t0 + 1 distinct READY messages, it
also sends a READY message. Finally, if a process receives
n− t0 distinct READY messages, then it delivers it.

The key difference from [5] is that, as in the binary value
consensus protocol, we construct ledgers to justify the mes-
sages we send. Specifically, when a process sends a READY
message, if it has received n − t0 distinct ECHO messages,
each of which is signed, it packages them into a ledger, and
forwards that with its READY message. Alternatively, if a
process sends a READY message because it received t0 + 1
distinct READY messages, then it simply copies an existing
(valid) ledger. Either way, if a process pi sends a READY
message for value v which was sent by process pj , then it has
stored a ledger containing n− t0 signed ECHO messages for
v, and it has sent that ledger to everyone.

As before, two ledgers conflict if they justify two different
values v and v′, both supposedly sent by the same process pj .
In that case, one ledger contains n−t0 signed ECHO message
for v and the other contains n− t0 signed ECHO message for
v′. Since any two sets of size n − t0 have an intersection of
size t0+1, this immediately identifies at least t0+1 processes
that illegally sent ECHO messages for both v and v′. These
process can by irrefutably proved to be Byzantine.

C. Analysis of the Multivalue Polygraph Protocol

Algorithm 3 has a message complexity of O(n4) and a
bit complexity of O(κ · n5) because it executes one reliable
broadcast and spawns n parallel instances of Polygraph and
because of Lemma V.3. By combining messages of paral-
lel binary consensus instances and compressing bv-broadcast
messages using existing optimizations [9], [25], the Multivalue
Polygraph Protocol achieves a communication complexity of
O(κ · n4) as depicted in our companion technical report [12].

Lemma VI.1 (Multivalue Polygraph Complexity). After
τGST , the multivalue Polygraph protocol has message com-
plexity O(n4) and communication complexity O(κ ·n4), where
n is the number of participants and κ is the security parameter.

VII. EXPERIMENTS: POLYGRAPH WITH A BLOCKCHAIN
APPLICATION

To understand the overhead of Polygraph over a non-
accountable consensus, we compare the throughput of the
original Red Belly Blockchain [16] based on DBFT [15] and
the “Accountable Red Belly Blockchain” based on Polygraph.
The reason is that DBFT and Polygraph are both one-shot
consensus protocols while a blockchain application allows for
a more realistic comparison of the performance. To this end,
we implemented the (naive) Multivalue Polygraph as described
in Section VI to decide blocks. We then turn the Multivalue
Polygraph Protocol into a state machine replication with the
classic technique [2, Fig.4] by tagging messages with their
consensus instance. Finally, we build a blockchain layer using

9

Algorithm 3 The (Naive) Multivalue Polygraph Protocol
1: gen-propose(vi):
2: RB-broadcast(EST, 〈vi, i〉)→ messagesi � reliable broadcast value to all
3:
4: repeat: � when you recieve a value from pk , begin consensus instance k with a proposal of 1
5: if ∃ v, k : (EST, 〈v, k〉) ∈ messagesi then
6: if BIN-CONSENSUS[k] not yet invoked then
7: BIN-CONSENSUS[k].bin-propose(1)→ bin-decisions[k]i
8: until ∃k : bin-decisions[k] = 1 � wait until the first decision
9:

10: for all k such that BIN-CONSENSUS[k] not yet invoked do � begin consensus on the remaining instances
11: BIN-CONSENSUS[k].bin-propose(0)→ bin-decisions[k]i � for these, propose 0

12: wait until for all k, bin-decisions[k] 6= ⊥ � wait until all the instances decide

13:
14: j = min{k : bin-decisions[k] = 1} � choose the smallest instance that decides 1
15: wait until ∃ v : (EST, 〈v, j〉) ∈ messagesi � wait until you receive that value

16: decide v � return that value

Algorithm 4 Reliable Broadcast
1: RB-broadcast(vi): � only executed by the source
2: broadcast(INITIAL, vi) � broadcast value vi to all

3: upon receiving a message (INITIAL, v) from pj :
4: broadcast(ECHO, v, j) � echo value v to all

5: upon receiving n− t0 distinct messages (ECHO, v, j) and not having sent a READY message:
6: Construct a ledger `i containing the n− t0 signed messages (ECHO, v, j).
7: broadcast(READY, v, `i, j) � send READY message and ledger for v to all.

8: upon receiving t0 + 1 distinct messages (READY, v, ·, j) and not having sent a READY message:
9: Set `i to be one of the (valid) ledgers received (READY, v`, j).

10: broadcast(READY, v, `, j) � send READY message for v to all.

11: upon receiving n− t0 distinct messages (READY, v, ·, j) and not having delivered a message from j:
12: Let ` be one of the (valid) ledgers received (READY, v, `, j).
13: deliver(v, j) � send READY message for v to all

20 30 40 50 60 70 80
Number of replicas

0

5000

10000

15000

20000

T
h
ro

u
g
h
p
u
t

(t
x
/s

e
c)

Red Belly Blockchain

Accountable Red Belly Blockchain

Fig. 1: The overhead of accountability in the Red Belly Blockchain
with 400 byte transactions cryptographically verified with ECDSA signatures
and parameters secp256k1 when deployed on 80 replicas geo-distributed in
Frankfurt, Ireland, London, N. California and N. Virginia.

the Red Belly Blockchain UTXO model with signed Bitcoin-
style transaction requests. We implemented Polygraph using
the RSA 2048 bits signature scheme to authenticate messages.

We deployed both blockchains on up to n = 80 c4.xlarge
AWS virtual machines located in 5 availability zones on
two continents: Frankfurt, Ireland, London, North California
and North Virginia. All machines issue transactions, insert
transactions in their memory pool, propose blocks of 10,000
transactions, verify transaction signatures (and account in-
tegrity, and run their respective consensus algorithm with
t = t0 = dn3 e−1, before storing decided blocks to non-volatile
storage. Red Belly Blockchain commits tens of thousands of
Bitcoin TPS on hundreds of geo-distributed processes [16].

Figure 1 represents the throughput while increasing the
number of consensus participants from 20 (4 machines per
zone) to 80 (16 machines per zone). We observe that the cost
of accountability varies from 10% at 20 processes to 40%
at 80 processes. The reason is twofold: (i) the accountability
presents an overhead due to the signing and verification of
messages authenticated using RSA 2048 bits in addition to
the verifications of built-in Red Belly Blockchain UTXO
transaction signatures. (ii) the c4.xlarge instances are low-
end instances with an Intel Xeon E5-2666 v3 processor of
4 vCPUs, 7.5 GiB memory, and “moderate” network per-
formance. On the one hand, as was observed [16], even in
this low-end situation, the Red Belly Blockchain scales in
that its performance does not drop. On the other hand, we
can see the Accountable Red Belly Blockchain still offers a
throughput of more than 10,000 transactions per second at
80 geo-distributed processes, which remains superior to most
non-accountable blockchains. Finally, the Accountable Red
Belly Blockchain commits several thousands of transactions
per second on 80 geodistributed machines, which indicates
that the cost of accountability remains practical.

VIII. DISCUSSION

The accountability cost induced by algorithm designs. The
fact that Polygraph achieves accountability efficiently while
piggybacking justifications is insufficient to obtain account-
able PBFT-like algorithms seems to indicate some interesting

10

aspects of the specific design of the DBFT algorithm [15]. In
DBFT, only the messages that are sent within the current round
and the two preceding rounds are sufficient to detect the guilty
processes. Extending PBFT-like algorithms with piggybacking
showed (Theorem IV.3) that the proof of guilt had to be built
with a chain of messages that goes back to a view, as far as
Ω(n) views away, where a process has prepared a value that
it did not propagate. It seems that the cost of this extension
is inherently induced by the view-change design common to
PBFT-like algorithms.

The peer-to-peer and client-server settings. The fact that
accountability cannot be offered to clients that are not playing
the role of servers was both mentioned as the Zombie case [12]
and [34]. Offering peer-to-peer accountability without such an
assumption, like Polygraph offers, has interesting applications
in consortium blockchains and shard chains [18] but also in
replicated state machine (RSM). Involving clients as part of
the protocol could thus strengthen this protocol accountability.
For example, one can think of an RSM where a client c (resp.
c′) accepts a command only if it receives acknowledgments
from a number k (resp. k′ 6= k) of different servers. This
RMS would thus offer different trade-offs between safety and
liveness to these different clients c and c′.

IX. CONCLUSION

We introduced Polygraph, the first accountable Byzantine
consensus algorithm. If t < n/3, it ensures consensus,
otherwise it eventually detects users that cause disagreement.
Thanks to its bounded justification size, Polygraph can be used
to commit tens of thousands of blockchain transactions. We
conjecture that the complexity of Multivalue Polygraph can
be reduced to O(n3) messages and O(max(κ, n) · n3) bits
by combining messages of parallel binary consensus instances
and compressing bv-broadcast messages [9].

Acknowledgements: We wish to thank Alejandro Ranchal
Pedrosa for his help in reproducing the experimental results.
This research is supported under Australian Research Council
DP180104030 and FT180100496.

REFERENCES

[1] Mostéfaoui A., Moumen H., and Raynal M. Signature-free asynchronous
Byzantine consensus with T < N/3 and O(N2) messages. In PODC,
pages 2–9, 2014.

[2] Abhinav Aggarwal and Yue Guo. A simple reduction from state machine
replication to binary agreement in partially synchronous or asynchronous
networks. IACR Cryptology ePrint Archive, 2018.

[3] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin,
Jean-Philippe Martin, and Carl Porth. BAR fault tolerance for cooper-
ative services. In SOSP, 2005.

[4] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-
Butucaru, and Sara Tucci Piergiovanni. Dissecting tendermint. In
NETYS, pages 166–182, 2019.

[5] Gabriel Bracha. Asynchronous Byzantine agreement protocols. Infor-
mation and Computation 75:130-143, 1985.

[6] Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. PhD thesis, The University of Guelph, June 2016.

[7] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on
BFT consensus. Technical Report 1807.04938v3, arxiv, 2018.

[9] Christian Cachin and Stefano Tessaro. Asynchronous verifiable infor-
mation dispersal. In SRDS, pages 191–202, 2005.

[8] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.
Technical Report 1710.09437v4, arXiv, Jan 2019.

[10] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems, 20(4),
2002.

[11] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM, Volume 43 Issue
2, Pages 225-267, 1996.

[12] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable
byzantine agreement. IACR Cryptol. ePrint Arch., 2019:587, 2019.

[13] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable
byzantine consensus. In Workshop on Verification of Distributed Systems
(VDS’19), Jun 2019. Unpublished work.

[14] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Brief announcement:
Polygraph: Accountable byzantine agreement. In DISC, pages 45:1–
45:3, 2020.

[15] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
DBFT: Efficient leaderless Byzantine consensus and its applications to
blockchains. In NCA, pages 1–8, 2018.

[16] Tyler Crain, Chris Natoli, and Vincent Gramoli. Red belly: A secure,
fair and scalable open blockchain. In S&P, 2021.

[17] Dorothy E. Denning. An intrusion-detection model. IEEE Trans.
Software Eng., 13(2), 1987.

[18] The eth2 upgrades. Accessed: 2020-12-12, https://ethereum.org/en/eth2/.
[19] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview:

Practical accountability for distributed systems. SOSP, 2007.
[20] Andreas Haeberlen and Petr Kuznetsov. The fault detection problem. In

OPODIS, pages 99–114, 2009.
[21] Maurice Herlihy and Mark Moir. Blockchains and the logic of account-

ability: Keynote address. In LICS, pages 27–30, 2016.
[22] libhoststuff. Accessed: 2021-03-01 https://github.com/hot-stuff/

libhotstuff.
[23] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Detection and

removal of malicious peers in gossip-based protocols. In In Proceedings
of FuDiCo, June 2004.

[24] Kim P. Kihlstrom, Louise E. Moser, and Peter M. Melliar-Smith.
Byzantine fault detectors for solving consensus. British Computer
Society, 2003.

[25] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman.
Asynchronous distributed key generation for computationally-secure
randomness, consensus, and threshold signatures. In CCS, pages 1751–
1767, 2020.

[26] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

[27] Butler W. Lampson. Computer security in the real world. In In Proc.
Annual Computer Security Applications Conference, December 2000.

[28] Jinyuan Li and David Mazières. Beyond one-third faulty replicas in
Byzantine fault tolerant systems. In NSDI, pages 10–10, 2007.

[29] Dahlia Malkhi and Michael K. Reiter. Unreliable intrusion detection in
distributed computations. In CSFW, pages 116–125, 1997.

[30] David Mazières and Dennis Shasha. Building secure file systems out of
Byzantine storage. In PODC, pages 108–117, 2002.

[31] Nikolaos Michalakis, Robert Soulé, and Robert Grimm. Ensuring
content integrity for untrusted peer-to-peer content distribution networks.
In NSDI, page 11, 2007.

[32] Roberto De Prisco, Dahlia Malkhi, and Michael K. Reiter. On k-set
consensus problems in asynchronous systems. In PODC, pages 257–
265, 1999.

[33] Alejandro Ranchal-Pedrosa and Vincent Gramoli. Blockchain is dead,
long live blockchain! Technical Report 10541v2, arXiv, 2020.

[34] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod
Viswanath. BFT protocol forensics. Technical Report 2010.06785, arXiv,
2020.

[35] Pierre Tholoniat and Vincent Gramoli. Formal verification of blockchain
Byzantine fault tolerance. Technical Report 1909.07453v2, arXiv, 2019.

[36] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and
Ittai Abraham. HotStuff: BFT consensus with linearity and responsive-
ness. In PODC, pages 347–356, 2019.

[37] Aydan R. Yumerefendi and Jeffrey S. Chase. Trust but verify: account-
ability for network services. In Proceedings of the 11st ACM SIGOPS
European Workshop, page 37, 2004.

[38] Aydan R. Yumerefendi and Jeffrey S. Chase. Strong accountability for
network storage. TOS, 3(3):11:1–11:33, 2007.

11

