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Abstract: Blockchain has found applications to track own-
ership of digital assets. Yet, several blockchains were shown
vulnerable to network attacks. It is thus crucial for companies
to adopt secure blockchains before moving them to production.
In this paper, we present Red Belly Blockchain (RBBC), the
first secure blockchain whose throughput scales to hundreds
of geodistributed consensus participants. To this end, we dras-
tically revisited Byzantine Fault Tolerant (BFT) blockchains
through three contributions: (i) defining the Set Byzantine Con-
sensus problem of agreeing on a superblock of all proposed
blocks instead of a single block; (ii) adopting a fair leaderless
design to offer censorship-resistance guaranteeing the commit
of correctly requested transactions; (iii) introducing sharded
verification to limit the number of signature verifications
without hampering security. We evaluate RBBC on up to 1000
VMs of 3 different types, spread across 4 continents, and under
attacks. Although its performance is affected by attacks, RBBC
scales in that its throughput increases to hundreds of consensus
nodes and achieves 30k TPS throughput and 3 second latency
on 1000 VMs, hence improving by 3× both the latency and
the throughput of its closest competitor.

I. INTRODUCTION

Unlike classic replicated state machines (RSM),
blockchains [73] aim at offering a peer-to-peer model
where many geodistributed participants replicate the system
state and where even more requesters can check their balance
and issue cryptographically signed transactions. While
permissionless blockchains allow any nodes to participate
in the consensus protocol and permissioned blockchains
allow only a pre-determined set of nodes to participate,
new blockchain designs will likely be open permissioned
where permissioned nodes offer a Byzantine Fault Tolerant
(BFT) consensus service to which permissionless clients have
access [15]: Ethereum v2.0 gives permissions in exchange of
a proof-of-stake while other blockchains are naturally building
upon BFT consensus [50], [37], [63]. The limitation of these
blockchains is that they cannot offer high throughput when
deployed on hundreds of nodes: verifying all transactions
is computationally intensive while agreeing on a block is
communication intensive.

In this paper, we propose Red Belly1 Blockchain (RBBC),

1“Red belly” stems from the name of the red-bellied black snake endemic
to the Sydney region where this blockchain was designed and implemented.

the first secure blockchain that scales to hundreds of geodis-
tributed consensus nodes. As far as we know, previous
blockchains either assume synchrony (a known bound on
message delays) or their performance drops when the number
of nodes increases. By contrast, RBBC achieves a strong form
of scalability where throughput does not drop as the number of
consensus nodes increases. Scaling to hundreds of consensus
nodes is ideal for a decentralized representative governance
where at least one consensus node can run in each of the
195 independent sovereign nations around the world to serve
the requests of many more nodes. RBBC is secure in that it
prevents double spending [73] by resolving conflicts and not
forking—even with asynchrony—and is resilience optimal in
that, among the n nodes executing each of its consecutive
consensus instances, up to t < n/3 can be Byzantine [60].
The consensus protocol of RBBC is also time optimal [35]
and was proved correct for any number of nodes using model
checking [9]. As RBBC supports reconfiguration [87], the set
of consensus nodes can be changed before being bribed.

To achieve scalability, RBBC offers a new balancing method
that totally orders all transactions while assigning them to
distinct groups of proposer and verifier nodes. (i) Its lead-
erless design balances the communication load on multiple
proposers, hence avoiding the congestion and slowdown in-
duced by the least responsive node. As opposed to classic
Byzantine consensus protocols that rely on a leader to pro-
pose transactions, RBBC’s multiple proposers combine distinct
sets of transactions into a superblock to solve the new Set
Byzantine Consensus problem and commit more transactions
per consensus instance. (ii) Its verification sharding balances
the computation load across verifiers. As opposed to existing
blockchains where all n nodes typically verify every transac-
tion, each of our transaction signatures is verified by between
t+ 1 and 2t+ 1 verifiers.

We conducted the most extensive experiment of a secure
blockchain on a thousand virtual machines (VMs) spread over
more than 10 countries in 4 continents, under normal condi-
tions and under adversarial attacks. We implemented RBBC
over a period of 4 years in 30k lines of code and compared
it to the traditional leader-based PBFT [18] with well-known
optimizations [10], [50] and the HoneyBadgerBFT [68], and
observed that, only RBBC scales to hundreds of geodistributed
VMs be they high-end (18 hyperthreaded cores) or low-end
VMs (4 vCPUs). The absence of a leader without the need for



System deployment network throughput latency #nodes #machines
peak max scale under attack

Elastico [66] country-wide emulated 20 KB/s 20 KB/s N/A 800 sec 1,600 800
Algorand [37] country-wide emulated 208 KB/s 90 KB/s ∼ 22 sec 50,000 1000

Omniledger [55] datacenter emulated 205 MB/s 1.8 MB/s N/A 14 sec 1,800 60
RapidChain [93] datacenter emulated 4.2 MB/s 3.8 MB/s N/A 9 sec 4,000 32

Mir [83] world-wide real 140 MB/s 30 MB/s 0 5 sec 100 100
RBBC world-wide real 264 MB/s 12.3 MB/s 760 KB/s 3 sec 8,560 1000

TABLE I
SCALABLE BLOCKCHAIN EXPERIMENTS – THE PEAK THROUGHPUT OF ELASTICO IS OBTAINED AT 100 NODES WITH 14 1MB-SIZED BLOCKS IN 700

SECONDS [66] OR AT LARGER SCALE BY PRODUCING 16 OF THEM WITHIN 800 SECONDS [93]. OMNILEDGER ACHIEVES 3500 TPS WHEN TOLERATING
25% OF ADVERSARIAL POWER FOR 512-BYTE TRANSACTIONS BUT GOES UP TO 4 · 105 TPS WHEN THE ADVERSARIAL POWER IS 1%. RAPIDCHAIN

PEAKS AT 7384 TPS FOR 512-BYTE TRANSACTIONS BUT NEEDS SMALLER BLOCKS TO ACHIEVE A 9-SECOND LATENCY, WHICH LEADS TO
7000 TPS [93]. THE THROUGHPUT OF ALGORAND IS 750 MB/H=208 KB/S OR 327 MB/H=90 KB/S FOR A 22-SECOND LATENCY AND THE IMPACT OF

ATTACKS ON ITS PERFORMANCE SEEMS NEGLIGIBLE [37]. THE THROUGHPUT OF MIR IS FROM 0, WHEN A LEADER STALLS AFTER ANOTHER, TO
60,000 TPS, WHEN ALL n = 100 PROPOSERS ARE CORRECT, WITH 500-BYTE PAYLOAD AND NO DURABILITY, AND PEAKS AT 40,000 TPS WHEN n = 4

WITH 3500-BYTE PAYLOAD [83]. THE THROUGHPUT OF RBBC PEAKS AT 660,000 TPS FOR 400-BYTE TRANSACTIONS WITH n = 300 (FIG.3) BUT
VARIES FROM 1900 TPS UNDER A 33% COALITION ATTACK (FIG.10) TO 30,684 TPS AT MAX SCALE, WHERE ITS LATENCY IS 3 S (TABLE IV).

a common coin yields a 3-fold improvement over the latency
and throughput of its closest competitor, HoneyBadgerBFT.

RBBC also guarantees a level of fairness. RBBC ensures
censorship-resistance in that all correctly requested transac-
tions are eventually committed, hence implying blockchain
liveness [19] for correctly signed transactions, but offering ex-
tra guarantees to requesters. A first consequence of censorship-
resistance is to mitigate a series of problems that plague
other blockchains, like anomalies [74], unfairness [46], front-
running [82], [27] or oligarchy [94], by ordering transactions
with their age. A second consequence of this property is partic-
ularly appealing at the application level when transactions are
well-formed (i.e., non-conflicting and valid): RBBC exchanges
O(n3) bits to commit a single transaction, just like lightweight
leader-based implementations [48], but without their increased
latency.

We start by presenting the background (§II) and our goals
and assumptions (§III). Then we present an overview of RBBC
(§IV), its design and implementation (§V) and the reason
why RBBC is a secure, fair and scalable blockchain (§VI).
We evaluate RBBC world-wide on up to 1000 machines and
under attacks, and compare it against other blockchains (§VII).
We conclude (§VIII) and provide the full proofs (§A) and a
disclosure (§B).

II. BACKGROUND AND THREAT MODEL

Most previous works on Byzantine fault tolerant
blockchains expose themselves to a series of threats
summarized below.

A. Double spending

The motivation for solving the traditional consensus prob-
lem is to guarantee that, all replicas agree on a unique block
at a given index [77]. The uniqueness of the block avoids
forks that could otherwise allow an attacker to double spend
its coins in two branches [80]. This problem is symptomatic
of blockchains that offer probabilistic guarantees [73], [91],
[66], [37], [55], [93]: although it helps with scalability as
depicted in Table I, the probability that consensus fails grows

with the number of blocks that need to be agreed upon [93].
A blockchain based on deterministic consensus ensures that
consensus is reached among correct nodes if less than a third
of all nodes are Byzantine. The traditional definition, however,
unnecessarily limits the scalability of the blockchain [89], [14],
[81]: most blockchains decide at most one of the proposed
blocks [14], [81]. Indeed, the leader whose proposal is even-
tually decided needs to propose requests to many nodes, its
network interface thus acting as a bottleneck [49], [41]. By
contrast, RBBC solves the Set Byzantine Consensus problem
by deciding up to Ω(n) proposals (Theorem 2) when n > 3t
and no forks are possible even when the communication is
asynchronous.

B. Incorrectly signed transactions

To decide a superblock that combines all proposed blocks,
one may think of solving a variant of the consensus problem
to instead combine proposals, into a decision [8], [76], [22].
For example, Agreement on a Core Set (ACS) [8], Interactive
Consistency (IC) [60] and Vector Consensus (VC) [76] all
require at least t + 1 (either n − t or t + 1 with n > 3t)
proposed values to be decided. In blockchain, however, there
may not even be t + 1 compatible proposed blocks: when
among 2t + 1 blocks one transaction per block is not cor-
rectly signed or transactions of distinct blocks conflict in that
they are concurrent and withdraw assets from an account
that has insufficient balance. This is why, we introduce the
Set Byzantine Consensus problem (§III) that ensures that all
correct nodes extract the correctly signed and non-conflicting
transactions from the same set of proposals. This allows RBBC
to combine proposed valid blocks into a superblock (§V-C) for
its performance to increase with the system size.

C. Unfairness

The reason for discarding invalid transactions is to cope
with Byzantine requests that may lead to anomalies [74],
unfairness [46], front-running [82], [27] or oligarchy [94]: a
correct requester could be unable to commit any of its trans-
actions due to invalid transactions always being committed
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first. An influential consortium blockchains called Hyperledger
Fabric [5] suffers from this censorship: as acknowledged by
its authors a spamming attack could lead its orderer service to
order only invalid transactions. Its optimized version, called
FastFabric [39], mitigates this issue by being ∼7× faster,
however, none of these versions tolerate malicious failures
(including denial-of-service attacks). Even its Byzantine-fault
tolerant ordering service [81] suffers from this issue as it
cannot detect whether a transaction is valid. RBBC favors
older requested transactions to achieve censorship-resistance
(Theorem 3).

D. Network attacks

Many blockchains assume synchrony where all messages
must be delivered in less than a known bounded time [73],
[91], [66], [52], [2], [54], [37], [44], [93], [61]. The drawback
is the vulnerability to various attacks [45], [74], [75], [32],
[33]. Elastico [66], RapidChain [93], OmniLedger [55] achieve
scalability by sharding the consensus. This sharding and block-
DAGs (e.g., [62]) are not to confuse with our verification
sharding as RBBC orders all transactions at once. One obtains
the world state of RBBC by accessing the last block, instead of
having to traverse the tip of a DAG. A sharded blockchain [90]
scales even further than what is presented in Table I, however,
some of its transactions are not atomic as their withdrawal
is decoupled from their credit. Other blockchains [53], [2],
[55], [79] assume synchrony but use a partially synchronous
consensus algorithm [31]. Ouroboros reached 247 TPS [51]
and assumes synchrony [52] but its Praos version [28], which
does not, has no evaluation. RBBC only assumes partial
synchrony to tolerate unknown delays.

E. Adversarial schedulers

Recent blockchains avoid completely the synchrony as-
sumptions by solving consensus probabilistically [68], [71],
[72], [63]. Stellar [63] requires a probabilistic leader election.
The HoneyBadger Byzantine Fault Tolerance (HBBFT) [68]
is a blockchain that combines proposals by solving ACS and
building upon an asynchronous binary Byzantine consensus
algorithm [71] that does not terminate under an adversarial
scheduler [85]. As we show in §VII-B5, HBBFT is too costly
for our needs because each of its nodes creates n− 1 erasure
coded messages and n−1 signatures, and verifies Ω(n2) signa-
tures. BEAT [30] and Dumbo [65], [43] improve over HBBFT
when transactions are respectively less than 10 bytes and 250
bytes but build upon the same consensus algorithm [71]. Some
consensus alternatives relax this assumption but require more
messages, which risks to increase the overhead [72]. RBBC
does not assume a fair scheduler.

F. Faulty leaders

To avoid both the cost often associated with randomization
(e.g., common coin) and synchrony, various systems [18],
[57], [20], [86], [67], [6], [10], [92], [83] assume partial
synchrony [31]. Unfortunately, they all rely on some leader and
revert to a costly recovery mechanism in case of failure [21],

[12], [7]. Tendermint [50] uses a variant of PBFT and cannot
scale beyond tens of nodes [14]. SBFT [38] uses threshold
signatures to reduce the communication complexity of PBFT.
It is evaluated in a wide area network as a key-value store and
as a blockchain system that peaks at 172 TPS. ByzCoin [53]
relies on PBFT using multicast trees to reduce the number of
messages to O(n). Similar to Bitcoin-NG [34], it also relies
on a leader. Unfortunately, the leaderless consensus algorithms
that could remain uninterrupted despite single points of failure
are incomplete [59] or impractical [12] while others [70],
[69] cannot be easily extended with verification sharding to
implement a blockchain.

G. Single point of slowdown

HotStuff [92] is a replicated state machine (RSM) that tries
to reduce the leader load by sending only the digest of each
request. Its implementation [48] exchanges asymptotically as
many bits as RBBC per committed transaction but requires
clients to send their transactions to all correct consensus
participants. Mir [83] is a deduplicating total order broad-
cast protocol that builds upon our sharded verification [25].
Although not formally stated, it could potentially solve the
Set Byzantine Consensus (SBC) problem (Def. 1) as it also
leverages multiple proposers. The key difference is that it
builds upon the PBFT leader-based consensus algorithm by
combining n PBFT proposers (called ‘leaders’ in Mir) and one
leader (called ‘primary’ in Mir). In Mir, verification sharding
may fail due to a single faulty or slow replica, in which
case it reverts to full verification. In RBBC, faulty or slow
nodes do not stop verification sharding as verification priorities
are assigned to replicas so that faster replicas simply verify
on behalf of the faulty or slow replicas. The throughput of
HotStuff and Mir drops to 0 when their leader is faulty or
slow as was reported separately for HotStuff [88] and Mir [83,
Fig.10]. As a full-fledged blockchain, RBBC ensures durability
(§VI-2) and tolerates failures by always deciding proposals.

H. Human errors

Consensus algorithms are particularly complex, especially
when they are monolithic [60], [18], [58]. As blockchains
require consensus to handle conflicting transactions from dif-
ferent nodes [42], an erroneous consensus algorithm can lead
to dramatic losses. Some algorithms suffer from known er-
rors [1]. Even when formally specified [70], their specification
might be too large to be machine-checked and may appear
erroneous [84]. Such errors already affected blockchains, for
example, when the randomized consensus at the heart of Hon-
eyBadgerBFT was proved non-terminating [85]. An attempt
to limit blockchain errors lies on theorem provers [4], [64],
however, they check proofs but not algorithms. By contrast,
the consensus algorithm of RBBC was formally proved safe
and live for any parameters n and t < n/3 using complete
model checking [9]. To achieve this, its complex (multivalue)
consensus protocol decomposes into reliable broadcast [13]
and binary consensus using Ben-Or et al.’s reduction [8]. The
reliable broadcast has been verified using model checking [56]
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while the binary consensus was formally verified with model
checking thanks to an additional decomposition [9]. Although
these verifications depend on the correctness of the model
checker, the compiler, etc., it considerably reduces human
errors.

III. GOALS AND ASSUMPTIONS

The goal is to implement a blockchain system whose
performance scales with a number of consensus participants
that treat (verify cryptographically and totally order) a large
amount of transactions sent by requesters all over the world.
The communication model is the classic resilience optimal
model with partial synchrony [31] and t < n/3 [18].

A. Open permissioned system
We consider an “open” distributed system consisting of

nodes that do not need any permission to join, called replicas
and requesters (‘requester’ is equivalent to ‘client’ in the
distributed computing literature but differs from the notion of
‘client’ of the Ethereum documentation). The replicas receive
blocks from other nodes and maintain a copy of the current
state of the blockchain whereas the requesters simply act
as clients, requesting balances and issuing transactions. We
call this an open “permissioned” system because nodes need
some permission to play the roles of proposers and verifiers.
Each proposer collects a set of requested transactions and
proposes it periodically as a batch whereas the verifiers check
the transaction signatures, a procedure called verification.
This open permissioned model is appealing for assigning
permissions based on proof-of-stake in Ethereum v2.0 or for
revoking permissions upon misbehaviors in LLB [78].

B. Transaction model
Let T be the set of all possible transactions and let any

transaction tx ∈ T be a tuple of 〈a, b,m, σ〉 that represents a
transaction with non-forgeable signature σ transferring amount
m from account a to account b (implemented with UTXO as
explained in §IV). We use SSL handshake with certificates
listed within blocks for secure channels and new blockchain
accounts create new key pairs that they use after they receive
coins. Let a proposal s ⊂ T be a set of transactions. Let
S = T ∗ be the set of possible proposals, or the set of possible
sets of transactions. A transaction 〈a, ∗,m, σ〉 is provisioned if
the balance of a is larger than m; it is valid if it is provisioned
and σ is the signature of the owner of a. A set of transactions is
valid if all its transactions are valid; it is non-conflicting if no
subset of its transactions are cumulatively withdrawing more
from any account than its balance. Note that the transactions
could be multisigned as their execution is not sharded.

Initially, all nodes have a copy of a special block called
the genesis block of the blockchain that indicates the initial
balance of some addresses (i.e., accounts) and the identities of
the permissioned nodes identified by their public keys. Note
that because permissioned nodes are listed in blocks, they
do not have to be “pre-selected” as in traditional consortium
blockchains [15] but can instead change periodically to avoid
bribery attacks [87].

C. Failure model
The failure model is Byzantine in that faulty nodes can fail

arbitrarily [77]. We refer to non faulty nodes as correct. More
specifically, among the n permissioned nodes there are at most
t < n

3 faulty nodes. Among these n permissioned nodes, the
set V of verifiers contains at least t+1 correct nodes and the set
P of proposers contains at least one correct proposer, which is
easily ensured with |V | = |P | = n. Note that any number of
requesters and replicas that are not part of these permissioned
nodes can be faulty. To ensure termination we assume that
the communication is partially synchronous [31] in that there
exists an unknown global stabilization time after which all
messages sent are delivered in less than a fixed amount of time.
In order to guarantee that the system is censorship-resistant
(Theorem 3) despite Byzantine nodes, we make the following
assumptions:

1) sequential-transaction-requests: a correct requester does
not issue invalid transactions or two conflicting transac-
tions;

2) bounded-requesting-rate: the rate at which transactions
enter the mempool (memory pool) of proposers is lower
than the rate at which transactions get proposed by
proposers.

Note that Assumption (1) only applies to correct nodes in order
to guarantee that their transaction will be eventually treated
by the system; the system cannot guarantee that transactions
issued by Byzantine requesters will be treated (as their trans-
actions may be invalid). Assumption (2) precludes Denial-of-
Service (DoS) attacks where correct proposers would receive
too many requests to keep track of them within their bounded
memory. We reduce the likelihood of a DoS attack by showing
empirically that RBBC treat a large volume of transactions for
a long period (§VII).

D. Goal
Our goal is to implement a censorship-resistance replicated

state machine (RSM). By censorship-resistance, we mean that
any transaction issued properly by a requester gets committed
by the system, hence preventing censorship (§II). By replicated
state machine, we refer to a way of totally ordering sets of
transactions in the form of a blockchain, starting from the
genesis block, so that all transactions are provisioned and
linearizable [47]. To this end, we require to solve a variant
of the BFT consensus problem to agree on an enumerable
valid subset of the union of the proposed values as follows.

Definition 1 (Set Byzantine Consensus): Assuming that each
correct node proposes an enumerable set of transactions as a
proposal, the Set Byzantine Consensus (SBC) problem is for
each of them to decide on a set in such a way that the following
properties are satisfied:

1) SBC-Termination: every correct node eventually decides
a set of transactions;

2) SBC-Agreement: no two correct nodes decide different
sets of transactions;

3) SBC-Validity: a decided set of transactions is a valid non-
conflicting subset of the union of the proposed sets;
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4) SBC-Nontriviality: if all nodes are correct and propose
an identical valid non-conflicting set of transactions, then
this subset is the decided set.

The SBC-Termination and SBC-Agreement properties are
common to many Byzantine consensus definition variants,
while SBC-Validity is different: it states that transactions
proposed by Byzantine proposers could be decided as long as
they are valid and non-conflicting. SBC-Validity is inspired by
the external validity property [17], [3] that requires a decision
to be valid and the idea of deciding at least t + 1 proposed
values [60], [8], [29], however, SBC-Validity cannot result
from any combination of these properties. For example, the
union of strict subsets of all proposed values is a possible
SBC decision. SBC-Nontriviality prevents a trivial algorithm
that always outputs an empty set from solving the problem.

IV. OVERVIEW OF RBBC

This section presents the architecture and the two main
novelties of RBBC: its verification leverages the few compu-
tational resources when the system is small and its consensus
leverages communication to commit more transactions when
the system is large and bandwidth becomes limited.

A. Architecture

Figure 1(a) depicts the architecture of RBBC that features
a memory pool (or mempool), a Set Byzantine Consensus,
a cryptography component, a reconciliation component and a
blockchain that stores the superblocks. The set Byzantine con-
sensus includes (i) a verified variant of the reliable broadcast,
(ii) a reduction from the multivalue consensus problem to the
binary consensus problem, (iii) a binary consensus and (iv) a
reconciliation protocol to build a superblock from multiple sets
of transactions. From time to time the |P | proposers extract
some transactions from their mempool that they propose to
the multivalue consensus.

B. Reducing the computation at small scale

Verification is needed to guarantee that the Unspent Trans-
action Output (UTXO) transactions [73] are correctly signed.
As verifications are CPU-intensive and notably affect per-
formance (as we experiment in §VII-A2), the verification is
sharded by letting different verifiers verify distinct transactions
without reducing security. The expected result is twofold. First,
it improves performance as it reduces each verifier’s com-
putational load. Second, it helps scaling by further reducing
the per-verifier computational load as the number of verifiers
increases. We confirm empirically in §VII-B4 that verification
sharding divides the verification load by 3.

As t verifier nodes can be Byzantine, each transaction
signature has to be checked by at least t+ 1 verifier nodes. If
all the t+ 1 nodes are unanimous in that the signature check
passes, then at least one correct node checked the signature
successfully and it follows that the transaction is correctly
signed. Given that t nodes may be Byzantine, a transaction
may need to be verified by up to 2t+1 times before t+1 equal
responses are computed. As depicted in Figure 1(b), we map
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(a) RBBC accepts balance, transaction tx and
catchup requests; its mempool batches transac-
tion requests before proposing a batch to the
Set Byzantine Consensus, which invokes the
verified reliable broadcast and multiple binary
consensus instances; when all binary consen-
sus instances have decided, a reconciliation
is invoked to group proposals into a decided
superblock that is stored in the blockchain
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tx3
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(b) Each transaction is ver-
ified by t + 1 = 2 primary
verifiers (solid lines), before
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by t = 1 secondary verifier
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(c) n = |P | = 4 proposals
depicted with grey rectan-
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decided superblock

Fig. 1. RBBC architecture (Fig. 1(a)), its verification sharding (Fig. 1(b)) and
its superblock optimization (Fig. 1(c))

each transaction to t+ 1 primary verifiers that eagerly verify
this transaction and t secondary verifiers that lazily verify this
transaction if necessary, hence summing up to 2t+1 verifiers.

C. Leveraging bandwidth at larger scales

In a large scale environment, geodistributed proposers are
likely to receive different sets of transactions coming from
requesters located in their vicinity. Instead of selecting one of
these sets as the next block and discarding the others, RBBC
combines all the sets of transactions proposed by distinct
proposers into a unique superblock to improve the performance
(as we quantify in §VII-B5).

In particular, RBBC decides upon multiple proposed sets
of transactions. To illustrate why this is key for scalability,
consider that each of the n consensus participants have O(1)
transactions to propose. As opposed to blockchains based
on traditional Byzantine consensus that will decide O(1)
transactions, RBBC can decide Ω(n) transactions. As the
typical communication complexity of Byzantine consensus is
O(n4) bits [18], [23], it results that O(n3) bits are needed per
committed transaction in RBBC (cf. Theorem 2), instead of
O(n4) and without suffering from a leader bottleneck. Some
leader-based approaches limit the communication complexity
by relying on threshold encryption [38], [3], [92], our goal is
to avoid more cryptography to limit the CPU load.

To illustrate how RBBC achieves this optimization, consider
Figure 1(c) that depicts n = 4 permissioned nodes that
propose different sets of transactions but that decide a value
that is actually a superblock containing the union of all
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sets of transactions that were proposed. It results from this
optimization that the number of transactions decided grows
linearly in n as long as each transaction is proposed by a
constant number of correct proposers (Theorem 2). Note that
some of these transactions may not be executable as they
conflict, this is why we need a reconciliation procedure (§V-C).

D. Assigning roles to nodes

We now explain how node roles are assigned for each
transaction using a deterministic function. For each consensus
instance, we have an ordered set P of permissioned node
identifiers where t < |P | ≤ n, indicating the nodes that play
the role of primary or secondary proposers for all transactions.
Note that this determinism does not imply predictability as
one can change proposers [37] directly, and such changes
can also be decided deterministically and anonymously by the
consensus nodes themselves with a recent voting protocol also
based on DBFT [16]. Although 2t < |P | ≤ n is necessary to
achieve censorship-resistance a requester never needs to send
requests to more than t+ 1 proposers.

For a requester to identify the proposers responsible to
propose a given transaction tx to the consensus, it executes
a deterministic function µ(a) that takes as input the source
account a of tx and returns the identifier of a node pi ∈ P ,
called the primary proposer of transaction tx . To guarantee
that a transaction is proposed (despite a faulty primary pro-
poser), between t and n−1 secondary proposers distinct from
pi are also selected deterministically. The number of proposers
of each transaction tx is at least t+1 to guarantee that tx will
be proposed by at least one correct proposer (Theorem 3).
The number of proposers can be as large as n, however, fewer
proposers lower latency whereas more proposers increase
throughput, as we will experiment in §VII-B.

As each transaction must be verified between t + 1 and
2t + 1 times, each proposer pi is also mapped to a set
of t + 1 primary verifierspi

and a set of t additional
secondary verifierspi

. The primary verifierspi
include pi

itself and verify upon reception the signatures of tx , so the
basic design makes some nodes both proposers and verifiers.
If the verification returns the same t+1 results, then it becomes
clear whether the signature of tx is correct. If not, t additional
verifications are needed to identify the majority of t + 1
identical responses indicating whether the signature of tx is
correct. This is why, the secondary verifierspi

set includes
nodes of P that are distinct from the primary verifierspi

and
that verify tx in case one or more of the primary verifiers are
slow/faulty. One could take more verifiers but would waste
CPU (§VII-A2).

V. DESIGN AND IMPLEMENTATION

In this section, we detail the design and implementation
of RBBC. Requesters request the balance of an account or
send a transaction to t + 1 proposers. All communications
are exchanged through SSL-encrypted channels. The following
methods are exposed by the permissioned nodes through a
JSON RPC to the requesters.

proposer 1

proposer 2

proposer 3

proposer 4

Propose Echo Ready Decide

pri. ver. 3

pri. ver. 2

pri. ver. 1

sec. ver. 2

sec. ver. 3

sec. ver. 4

sec. ver. 1

pri. ver. 4

pri. ver. 4

requester

Request

binary consensus

verified reliable broadcast

21 3 4 5

set Byzantine consensus
time

Fig. 2. The typical message pattern of the consensus protocol between each
proposer i and the permissioned nodes that play the role of primary verifiers
i (pri. ver. i) and secondary verifiers i (sec. ver. i) for proposer i

• submit(tx ) runs at proposer nodes and takes as input a
UTXO transaction tx of about 400 bytes from a requester.
If tx is provisioned, does not exist already and does not
conflict with any transaction of the mempool, then it is
placed in the mempool and true is returned. A correct
requester calls this method at t+ 1 proposers.
• balance(a) takes account a as an input and returns its
UTXOs. A requester performs this operation by contact-
ing different proposers until t + 1 equal notifications are
received. Not only does it allow small devices to securely
consult the state without downloading the blockchain, but
it also guarantees the integrity of the ledger.
• catchup() is a method for lagging or recovering replicas
to get updated about the current index of the blockchain.

A. Normal consensus execution

Figure 2 depicts a normal consensus execution when n =
|P | = 4 and t = dn/3e − 1 = 1 where a single requester
sends one request to t + 1 proposers for simplicity (actually,
many requesters typically request proposers in parallel) and
each one of the proposers executes the following:
Ê Request. A requester computes µ(a) with the source ac-

count a of transaction tx to retrieve the mapped proposers
and verifiers of tx and sends the request for transaction tx
to the t+1 primary proposers and verifiers. Upon reception,
tx is added to the mempool and is verified by the primary
verifiers.

Ë Propose. Each proposer selects, from their mempool, trans-
actions (i) for which it is the primary proposer and (ii) in
decreasing order of their age or the number of blocks
appended to the chain since these transactions arrived. This
batch is proposed to the consensus by sending it in an
INIT message to all other permissioned nodes. (Note that a
proposer with an empty mempool starts the consensus with
an empty proposal if it receives a non-empty proposal from
another node to guarantee sufficiently many participants.)

Ì Echo. Upon reception, permissioned nodes broadcast a
digest of each received proposals in ECHO messages.
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Í Ready. Upon reception of n − t equal ECHO messages,
verifiers for the received proposals verify them (if not
already done in the request step) and send the result in
a READY message (§V-B) to all proposers. Upon reception
of t + 1 equal READY messages, a node broadcasts the
READY message if it has not done so already. (This step is
represented by a single message exchange in Figure 2 due
to the fast Ready-Decide optimization presented below.)

Î Decide. Upon reception of 2t + 1 equal READY messages
(§V-B) for a particular proposal, the nodes store this pro-
posal in an array indexed by the sender id and input 1 to a
corresponding binary consensus instance. This is repeated
for other proposals until |P |− t binary consensus instances
decide 1, after what a reconciliation (§V-C) combines into
a superblock every valid transaction of proposals for which
a binary consensus output 1.

a) Good execution complexity and scalability: In good
executions, RBBC differs from previous work by committing
securely Ω(n) transactions within 4 message delays (Ë–Î)
thanks to the Ready-Decide optimization: In the Ready step,
if the verifiers are fast enough to verify before the reception
of t+1 equal READY messages, then they broadcast a READY
message. As a result, all nodes receive 2t + 1 equal READY
messages in a single message delay allowing them to enter
the Decide step by inputting 1 to a binary consensus instance
directly. At the end, the proposers pick the transactions from
the Ω(n) proposals for which the binary consensus decided 1
and reconciliate them into a superblock. The complexity and
throughput of RBBC are computed in §V-C and Theorem §2.

B. Verified all-to-all reliable broadcast

For proposers to exchange verified proposals we add
a secp256k1 Elliptic Curve Digital Signature Algorithm
(ECDSA) verification to the reliable broadcast, which is orig-
inally a 3-step one-to-all communication abstraction exchang-
ing INIT, ECHO and READY messages where any message
delivered to a correct proposer gets eventually delivered to
all correct proposers [13].

1: verified-reliable-broadcast(v): � verified variant of reliable broadcast at pi

2: broadcast(INIT, v) � broadcast value v to all

3: upon receiving a message (INIT, v) from pj :
4: broadcast(ECHO, h(v), j) � echo the hash digest of v

5: upon receiving n− t (ECHO, h(v), j) msgs and not having sent READY:
6: if pi ∈ primary verifiers(v) then verif ← verify(v)

7: if pi ∈ secondary verifiers(v) then wait(∆); verif ← verify(v)

8: broadcast(READY, verif , h(v), j) � piggyback verifications

9: upon receiving t + 1 (READY, verif , h(v), j) and did not send READY:
10: stop-verify(v) � prevent unnecessary verifications
11: broadcast(READY, verif , h(v), j) � piggyback verifications

12: upon receiving n− t (READY, verif , h(v), j) and not delivered from j:
13: if is-verified(v, verif ) then deliver(v, j) � deliver if sufficiently verified

Our verified variant of the reliable broadcast adds a verifi-
cation function verify (lines 6 and 7) before the broadcast of
the READY message. A proposer broadcasts an INIT message
with a proposal v (line 2). Upon reception, its digest h(v) is
broadcast in an ECHO message (line 4); we use the SHA256

digest to save bandwidth as proposals can contain thousands
of transactions (§VII-B). Upon reception of n− t equal ECHO
messages, the verification of the proposal starts first at the
primary verifiers(v) and later, if necessary, at the secondary
ones. After the verification, a list verif of integers indicating
the indices of invalid transactions in the proposal is appended
to the READY message, which is then broadcast (line 8)
with the digest of the corresponding proposal. After receiving
the same verif field for h(v) from t + 1 distinct processes
(line 9), a node knows which transactions of v are valid. Upon
reception of n− t equal READY messages, v is delivered if it
contains valid transactions (line 13). The proof that the verified
reliable broadcast ensures the properties of reliable broadcast
for each valid value (and discards invalid values) relies on the
fact that the sets Q of correct proposers and Q′ of verifiers are
such that Q∩Q′ ≥ t+1, guaranteeing that the READY message
with the same verif will be sent at line 11 (cf. Theorem 4).

C. Agreeing on a superblock

We modify Ben-Or, Kelmer and Rabin’s reduction
(lines 14–23) of the multi-value consensus problem to the
binary consensus problem [8] to solve the Set Byzantine
Consensus (§III) by replacing the reliable broadcast by our
verified reliable broadcast (§V-B) and invoking a reconcili-
ation to decide a superblock of non-conflicting provisioned
transactions (§III). Symbol → indicates that the array props
gets populated in the background by all concurrent reliable
broadcasts (line 15). For each of the first proposals delivered
at pi by the verified reliable broadcasts (§V-B), pi proposes 1
to a binary consensus instance (line 19). Proposer pi proposes
0 to the remaining binary consensus instances (line 21) after
a timer expires and |P | − t consensus return 1. This timer
(line 16) increases with the age of the oldest transaction of
the mempool to potentially decide it.

14: propose(val): � set Byzantine consensus at pi with val a batch of txs
15: verified-reliable-broadcast(val)→ props � exclude invalid txs §V-B
16: start-timer(age of oldest tx in mempool) � give time to slow ones
17: while |{k : bitmask [k] = 1}| < |P | − t or timer did not expire do
18: for all k such that props[k] has been delivered � for all delivered
19: bitmask [k]← bin-proposek(1)� propose 1 to kth binary consensus

20: for all k such that props[k] has not been delivered � for undelivered
21: bitmask [k]← bin-proposek(0) � propose 0 to kth binary consensus
22: wait until bitmask is full and ∀`, bitmask [`] = 1 : props[`] 6= ∅
23: reconciliate(bitmask & props) � combine into a superblock

All binary consensus instances proceed in parallel (their
invocation is non-blocking). The decisions of these binary
consensus instances constitute a bitmask that is applied to
the set of potentially decidable proposals (line 23). Although
the array of verified proposals may differ across correct nodes,
the bitmasks of all correct nodes are guaranteed to contain 1s
(Lemma 5) and be identical due to the agreement properties of
the binary consensus. Note that even though the proposal may
not be known yet for some of these indices, it is guaranteed by
the reliable broadcast to be eventually delivered at all correct
proposers (§V-B). Each correct proposer waits until a proposal
has been delivered at each of these indices (line 22), then
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each correct proposer obtains the same set of proposals after
applying the bitmask . The unselected proposals are stored in
the mempool for later.

1) Reconciliation: To fill the superblock, we reconciliate
the decidable set of proposals (lines 24–29). Correct proposers
extract deterministically the transactions by going through all
proposals and through each of their transactions one-by-one,
to add the non-conflicting provisioned ones to the superblock.
With the UTXO model, one can easily ensure all trans-
actions are provisioned and non-conflicting by implemeting
conflict(tx , ∗) that executes transaction tx and returns false
if all the UTXOs tx consumes exist and otherwise returns
true. For the sake of fairness (i.e., to not favor any particular
proposer), correct proposers traverse the proposals from the
index number (k mod n) to index number (k − 1 mod n)
where k is the index of the last superblock in the blockchain.
This prevents the proposer with the lowest index number from
having its proposed transactions added to the superblock with
a higher priority than the transactions of other proposers. (We
will show in §VII-B that the computation needed for recon-
ciliation is negligible compared to the signature verification.)

24: reconciliate(props): � combine proposals, initially superblock = ∅
25: for i = 0..(n− 1) do � use the last block index k for fairness
26: for tx ∈ props[(k+ i) modn] do � starting from the first tx of proposal
27: for ctx ∈ superblock do � for all committed transactions
28: if ¬conflict(tx , ctx) then superblock ← superblock ∪ {tx}
29: decide(superblock) � decide superblock of non-conflicting transactions

2) Binary consensus: To solve the binary consensus de-
terministically, we chose the binary consensus of DBFT [23]
because it is resilience optimal, time optimal and was recently
verified with model checking [85], [9]. Each replica refines
an estimate value, initially its input value to the consensus,
across consecutive rounds until it decides (line 45). It in-
vokes broadcast primitives that deliver some values into a
dedicated variable pointed out by → at lines 32, 36 and
39. The bv-broadcast (line 32) is a reliable broadcast for
binary values [72]. (We optimize by piggybacking it for
r = 1 with the verified-reliable-broadcast at line 15.) One
replica per round acts as a coordinator by broadcasting its
value c (line 36) that others prioritize (line 38) to help them
converge to the same decision. Hence, RBBC is leaderless with
multiple coordinators. The binary values are then forwarded
in AUX messages (line 39) and each replica waits to receive a
sufficiently represented set of these AUX values (lines 40–42).
If only one value is sufficiently represented (line 43) and if
it corresponds to the parity of the round, then it is decided
(line 45). Otherwise, val is set to the parity of the round and
another round starts.

3) Complexity: In the worst case, each bin-propose decides
within O(t) rounds after the network stabilizes and messages
start being delivered in bounded time, which is optimal [35].
Hence, as the (multivalue) propose needs a constant additive
factor of message delays, its time complexity is asymptotically
optimal. Moreover, propose is resilience optimal as it tolerates
any t < n/3 failures [60]. It has the same communication

30: bin-propose(val): � binary consensus at pi with val ∈ {0, 1}
31: loop: � loop that starts with round r = 1

32: (bv-broadcast(EST, r, val)→ cvals) � reliable bcast if not done at l.15
33: start-timer(r) � timeout increases with rounds
34: if i = r mod n then � coordinator rebroadcasts
35: wait until (cvals = {w}) � cvals stores delivered values

36: broadcast(COORD, r, w)→ c � coordinator broadcasts

37: wait until (cvals 6= ∅ ∧ timer expired) � wait enough time

38: if c ∈ cvals then e ← {c} else e ← cvals � prioritize coord value
39: broadcast(AUX, r, e)→ bvals � broadcast these values
40: wait until ∃s ⊆ bvals where the two following conditions hold:
41: • s contains contents received from at least n− t distinct nodes
42: • ∀v ∈ s, v ∈ cvals � every value in s is in cvals

43: if s = {v} then � if there is only one value in s

44: val ← v � adopt this singleton value
45: if v = (r mod 2) and not decided yet then decide(v) � decide

46: else val ← (r mod 2) � otherwise, adopt the current parity bit

47: if decided in round r − 2 then exit() � help others in two last rounds

48: r ← r + 1 � increment the round number

complexity O(n4) as PBFT [18] and DBFT [23] but decides
up to n times more transactions than them in good executions:
O(n3) bits exchanged per committed transaction batch. Recall
that the communication complexity of PBFT is O(n4) bits be-
cause there are at most t+1 view-change rounds, the message
in each round contains the state received from the previous
view-change rounds, which is O(t) bits, and is broadcast by
n nodes, leading to (t+ 1) ·O(t) · (n− 1) · n = O(n4).

VI. CORRECTNESS AND ANALYSIS

To explain how RBBC implements a secure, fair and
scalable blockchain, we first show that it disallows double-
spending by implementing an RSM that stores exclusively
valid non-conflicting transactions to reliable storage (Theo-
rem 1). Finally, we explain why its throughput scales with the
number of nodes (Theorem 2) and show that RBBC offers
censorship resistance (Theorem 3). The proofs are deferred to
the appendix (§A).

1) Correctness: To avoid forks that could lead to double-
spending, RBBC executes consensus instances in a totally
ordered sequence and at the end of each instance the decided
superblock orders all transactions it contains in the same order
at all replicas. Note that to implement a blockchain system,
RBBC offers stronger guarantees than a simple RSM, by for
example discarding the incorrectly signed transactions eagerly
(line 13) and the conflicting transactions lazily (lines 28).

Theorem 1 (Replicated State Machine): In RBBC, all correct
replicas observe the same sequence of committed transactions,
which are all valid and non-conflicting.

2) Durability: To ensure durability [11], the remaining
transactions are stored in a block in an append only log on
disk. For recovery, each node keeps a write-ahead log con-
taining the messages it has broadcast during at least the pre-
vious two committed multivalued consensus instances, older
messages being garbage collected. To ensure transactions are
verified and committed quickly, the UTXO table is stored in
memory. To minimize the size of the UTXO table, transactions
should consume all UTXOs for their account. After a crash,
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nodes can reconstruct their UTXO table by parsing their blocks
from disk. Nodes that need to recover messages from older
consensus instances simply collect t+1 equal instances of the
decided block.

3) Scalability: We explain the scalability of RBBC by
showing that RBBC commits Ω(n) transactions per consensus
instance in good executions where BFT algorithms (e.g.,
PBFT, DBFT, Tendermint, HotStuff) that do not solve SBC
(Def. 1) commit O(1) transactions. Note that we could have
modified leader-based consensus algorithms (PBFT, Tender-
mint, HotStuff) for their leader to batch Ω(n) times more
requests, however, this would have added up to the leader load.
More dramatically, the leader would have sent Ω(n) bytes to
n − 1 nodes, which would have taken a quadratic amount
of time in a WAN, where no Ethernet broadcast is available
and the message authentication codes (MACs) optimization
of PBFT can thus not be used. Instead, RBBC commits Ω(n)
transactions as explained below.

Theorem 2 (Scalable throughput): Let m be the number of
transactions proposed to the Set Byzantine Consensus by each
proposer and let n = |P | be the number of proposers. Assume
that proposals are all reliably delivered before the algorithm
times out (line 17) but that all dn3 e − 1 Byzantine proposers
do not propose any transaction. The Set Byzantine Consensus
commits between 2m (as n tends to infinity) and Ω(n) distinct
transactions.

4) Deduplication: If a Byzantine client can approximate
closely the age parameter and the timing of the system, then
more transactions can be proposed twice and their duplicates
may persist until the reconciliation phase, after which one of
them is discarded (line 28) as they necessarily conflict. One
way to reduce the ability of Byzantine to create duplicates is
for each node to choose the age parameter for each transaction
at random as a small constant. Another is to apply this
randomization only for clients that are duplicating transactions.
Note that some recent efforts [83] were devoted to eliminate
duplicated transactions during the consensus execution by
adopting a more conservative approach where each transaction
can only be proposed by a single proposer at a time. If the pro-
poser of this particular transaction fails, then an epoch change
happens and another one is selected. Although the benefit is
to eliminate duplicates during the consensus execution, the
drawback is to increase linearly this transaction latency as
up to t epoch changes may be necessary before proposing
it correctly.

Theorem 3 (Censorship-Resistance): Every transaction sent
by a correct requester is eventually included in a superblock.

Censorship-resistance differs from other notions of
blockchain liveness, validity or resilience by offering
guarantees to a correct requester [68], [19], [43] and without
requiring its transaction to be sent to all replicas [36], [5].
It is important to note that censorship-resistance does not
require all requesters to be correct, it simply ensures that if a
requester follows the protocol to submit its transaction, then
this transaction is guaranteed to be committed by the system.
By contrast, a Byzantine requester not following the request

protocol, does not have this guarantee.

VII. EXPERIMENTAL EVALUATION

In this section, we show that RBBC scales up to hundreds
of Amazon EC2 VMs running consensus located on different
continents and replicating the blockchain state to up to 1000
machines in 14 separate regions. To this end, we compare
the performance of (1) RBBC with its verification and its
consensus as depicted in §V, HBBFT which corresponds to
the original code of the HoneyBadgerBFT protocol as made
available by its authors [68] and (3) CONS1 that corresponds
to a variant of RBBC with the classic 3-step leader-based
BFT algorithm of PBFT taken from [26] with BFT-SMaRt
optimizations [18], [50], [10].

We ran four types of experiments with parameters from
Table II: (i) with a varying fault tolerance and verification
in a geodistributed environment (§VII-A1); (ii) with all three
blockchains on low-end machines (§VII-B); (iii) with up to
1000 replicas all updating their copy of all account balances
(§VII-C); and finally (iv) with Byzantine failures (§VII-D).

1) Machine specifications: We ran the blockchains on all
the 14 Amazon datacenters that we had at our disposal at
the time of the experiment, North Virginia, Ohio, North Cal-
ifornia, Oregon, Canada, Ireland, Frankfurt, London, Tokyo,
Seoul, Singapore, Sydney, Mumbai, São Paulo. Each pair of
datacenters is separated by a specific delay and bandwidth
listed in §VII-C. We tested three VM types: (1) high-end
c4.8xlarge instances with an Intel Xeon E5-2666 v3 processor
of 18 hyperthreaded cores, 60 GiB RAM and 10 Gbps network
performance when run in the same datacenter where storage is
backed by Amazon’s Elastic Block Store (EBS) with 4 Gbps
dedicated throughput; (2) mid-end c4.4xlarge instances with
an Intel Xeon E5-2666 v3 processors with 16 vCPUs and
30 GiB RAM with “high” network performance (as defined
by Amazon), 2 Gbps EBS dedicated throughput; (3) low-end
c4.xlarge instances with an Intel Xeon E5-2666 v3 processor
of 4 vCPUs, 7.5 GiB RAM and “moderate” network perfor-
mance, and 750 Mbps EBS dedicated throughput. To limit the
bottleneck effect on the leader of PBFT, we always place the
leader in the most central (w.r.t. latency) region, Oregon. When
not specified, proposals contain 10,000 transactions and t is
set to dn3 e − 1.

2) Leader-based (CONS1) and randomized BFT (HBBFT):
CONS1 is the classic 3-step leader-based Byzantine consensus
implementation similar to PBFT [18], the Tendermint con-
sensus [50], and including the concurrency optimizations of
BFT-SMaRt [10]. To reduce network consumption CONS1 is
implemented using digests in messages that follow the initial
broadcast. Both CONS1 and HBBFT variants use a classic
verification, as in traditional blockchain systems [73], [91],
that takes place at every proposer upon delivery of the decided
superblock from consensus. HBBFT uses a common coin [71]
and reliable broadcast with erasure codes.

A. Peak scalability and leaderless fault tolerance
In a leaderless case, the first messages from n− t replicas

determine the performance, so a lower t can yield lower
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notation meaning value motivation

µ compute primary proposer 0 ≤ id < n avoid conflicting transactions to different proposers
β block size 1 ≤ β ≤ 10, 000 adjust the block size impact on network delay
P set of proposers t+ 1 ≤ |P | ≤ n fewer (resp. more) proposers commits faster (resp. more)
τ transaction signature ECDSA require smaller keys and signatures than RSA for similar security

TABLE II
PARAMETERS USED IN THE EXPERIMENTS

 0

 100

 200

 300

 400

 500

 600

 700

20 60 100 140 180 220 260 300
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

T
h
ro

u
g
h
p

u
t 
(t

h
o

u
sa

n
d

 t
x/

se
c)

L
a
te

n
cy

 (
se

c
o
n

d
s)

Nodes

RBBC (throughput) RBBC (latency)

Fig. 3. The performance (latency and throughput) of RBBC in a single
datacenter

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 6 12 24 46

T
h
ro

u
g
h
p
u
t 
(t

h
o
u
s
a
n
d
 t
x/

se
c)

Value of t

RBBC

 1

 10

 100

All None

All or no verifications

CONS1 HBBFT

Fig. 4. Impact of fault tolerance on RBBC and verification on 3 blockchains
with n = 140 geodistributed machines

performance. We stress test RBBC in a single datacenter with
up to 300 high-end VMs and a fixed fault tolerance to measure
how fast it could go in a consortium setting. To this end, we
fix t to the largest possible fault tolerance with n = 20 nodes
and increase the number of nodes from 20 to 300 permissioned
nodes in steps of 20. The results, shown in Figure 3, indicate
that the throughput scales to hundred of nodes with a practical
latency: the throughput scales up to n = 260 nodes to reach
660,000 TPS while the latency remains lower than 4 seconds.
At n = 280 throughput drops slightly. We discuss below the
impact of varying t on performance.

1) Impact of fault tolerance without a leader: Next we
evaluate the performance when running 10 high-end VMs in

each of the 14 regions for a total of 140 machines. We varied
t from the minimum to its maximum value (46 < 140

3 ) with
sharded verification as depicted in Figure 4 (left).

The peak throughput of 151,000 TPS is achieved with the
fault-tolerance parameter t = 12. When t ≤ 6, performance
is limited by the (t − 1)th slowest node as the consensus
waits for a higher number of n − t proposers. The peak
throughput occurs while waiting for n − t = 128 nodes,
probably because it avoids waiting for any node of the slowest
region (Table III), São Paulo. When t ≥ 24, performance
tends to be limited and drops further as the fault tolerance
t keeps increasing. We conjecture (and show below) that the
t + 1 necessary cryptographic verifications induce a higher
computational load as t increases. As mentioned in Section II,
alternative leaderless Byzantine consensus algorithms lack
details [59] or have exponential complexity, which would be
impractical [12].

2) Impact of verification sharding: To verify the conjec-
ture that more verifications slow performance down, we ran
additional experiments and measured the performance with
different numbers of verifications per transaction. As depicted
in Figure 4 (right), we compared all three blockchains with all
nodes verifying all transactions (all) and without any verifica-
tion (no verification). The performance of all blockchains is
higher without verification than with full verification. RBBC is
the most affected, dropping from 219,000 TPS to 33,000 TPS
while HBBFT and CONS1 throughputs drop less but from
a lower peak. As we will show, there are factors other than
verification, like the use of a leader and erasure codes §VII-B3,
that have a larger impact on these algorithms, yet this confirms
that our previous conjecture was correct.

B. Scaling throughput up to hundreds of low-end machines

We now experiment on up to 240 low-end VMs evenly
spread on 5 datacenters in Europe (Ireland and Frankfurt)
and the United States (Oregon, Northern California, and
Ohio). Following up on our previous verification observations,
we precisely measured the CPU usage with go pprof on
microbenchmarks and confirmed that the workload could be
CPU-bound. In particular, we measured that dedicating the
4 vCPUs of these low-end instances led to verify about 7800
serialized transactions per second with 97% of CPU time spent
verifying signatures and 3% spent deserializing and updating
the UTXO table.

1) RBBC vs. a leader-based BFT blockchain: Figure 5
shows the throughput and latency of RBBC with t + 1
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proposers and CONS1 with different sizes of proposals. As
CONS1 is limited to a single proposer (its leader) while
RBBC supports multiple proposers, we tested whether CONS1
performance would be better with batching more transactions
per proposal than RBBC. With proposal size of 1000, RBBC
throughput increases from 3000 TPS to 9000 TPS because of
the additional resources and proposals of the growing number
of nodes. It flattens out around 10,000 TPS while latency
increases from 2 to 8 seconds. By contrast, CONS1 throughput
decreases as the number of nodes increases, despite larger
proposals.

2) Latency vs. throughput at 100 nodes: To better un-
derstand the difference in performance of RBBC compared
to the leader-based approach, we depicted on Figure 6 the
evolution of the latency as a function of throughput at a
reasonable number of consensus nodes, n = 100 and different
proposal sizes of 1 to 5000. We clearly see that the throughput
of CONS1 reaches a limit of about 1100 TPS while RBBC
approaches 14,000 TPS, which indicates a 12-fold speedup of
RBBC over CONS1. CONS1 has a better minimum latency of
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270 ms compared to 640 ms for RBBC for proposals of size 1
but CONS1 latency explodes rapidly. (HBBFT does not appear
due to lower performance.)

3) RBBC vs. a randomized BFT blockchain: Figure 7 de-
picts the performance of RBBC and HBBFT with n proposers,
with proposal sizes of 100 and 1000 transactions. With a larger
portion of proposers the throughput and latency of RBBC
increases faster. With n proposers, the throughput peaks at
11,124 TPS and latency reaches 25,100 ms with 240 nodes,
while with t+ 1 proposers the throughput was lower and the
latency was much lower. HBBFT performance degrades as the
number of nodes increases: latency increases and throughput
decreases (we omit latencies beyond n = 100 as they reach
minutes). This is because each node broadcasts n− 1 erasure
coded messages with as many distinct signatures to distinct
nodes that must be echoed, yielding Ω(n2) verifications per
node.

4) Reducing verification count helps scaling: To better
measure the performance gain of verification sharding, we
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Fig. 9. Throughput and latency comparison of the blockchain solutions with
n = 140 and t = 46, and proposal sizes of 1, 10, 100, 1000 and 10000
transactions

recorded the average number of times a transaction was
verified for t+1 and n proposer nodes. The results are shown
in Figure 8 where we observe that with t + 1 proposers the
number of verifications stays close to the optimal, while with
n proposers the number of verifications remains around the
middle of t+ 1 and 2t+ 1. This is likely due to the increased
load on the system causing verifications to occur in different
orders at different nodes. This tends to confirm that verification
sharding is important for scalability.

5) Comparing the blockchains: Figure 9 explored the ef-
fect of deciding the unions of proposals when running the
blockchain. CONS1 has the lowest latency because in all
executions the leader acts correctly, allowing it to terminate
in only 3 message delays, where RBBC requires 4 message
delays. Due to its inherent concurrency, RBBC offers the
best latency/throughput tradeoff: at 1000 ms latency, RBBC
offers 12,100 TPS whereas at 1750 ms latency, CONS1 offers
only 5800 TPS. Note that RBBC does not feature the classic
costly view change [21], [12], [7], [92] and its latency remains
similar despite faults (cf. §VII-D). Finally, HBBFT has the
worst performance because its consensus [71] is randomized
and it uses erasure codes: each node spends over 200 ms to
compute 1000 transactions for each of the 140 proposals of
this experiment. Again this confirms the important CPU load
induced by the signature verifications.

 100
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 10000
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RBBC
RBBC,Byz1

 1

 10
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HBBFT
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Fig. 10. Comparing throughput and latency of RBBC and HBBFT, with
normal and Byzantine behaviors on 100 geodistributed nodes; all n nodes are
making proposals of 100 transactions

C. Evaluation with 1000 VMs

Before spawning 1000 VMs to confirm RBBC scalability,
we measured the variation of latencies and bandwidth between
our 14 Amazon EC2 datacenters (cf. Table III). The minimum
latency is 11 ms between London and Ireland, whereas the
maximum latency is 332 ms observed between Sydney and São
Paulo. Bandwidth between Ohio and Singapore is measured at
approximately 64.9 Mbits/s (with variance between 6.5 Mbits/s
and 20.4 Mbits/s).

To avoid wasting bandwidth, we segregated the roles: all
1000 VMs act as servers, keeping a local copy of the balances
of all accounts. On these replicas, 10 clients per 840 low-end
machines (60 VMs in each of 14 datacenters) send transactions
and 160 high-end machines (40 machines in each of the Ire-
land, London, Ohio and Oregon datacenters) decide upon each
superblock. Each of the 8,400 clients start with 100 UTXOs
of size 64 bytes each (for a state database of size 51.27 MiB)
and each proposal contains up to 1000 transactions. The
resulting performance is depicted in Table IV. Interestingly,
the throughput is only around 30,000 TPS but this is not due
to the low capacity of RBBC but due to the difficulty of
generating the workload: the replicas are located in 14 different
datacenters and have to wait for owning a UTXO before they
can request a transaction that consumes it. The asynchronous
write latency measures the time a proposer acknowledges a
transaction reception. Importantly, the transaction commit time
(latency) remains about 3 seconds despite the large traffic.

D. Experiments under Byzantine attacks

We evaluate RBBC under 2 Byzantine attacks:
Byz1 The payload of the reliable broadcast messages is altered

so that no proposal is delivered for reliable broadcast
instances led by faulty proposers. To this end, the binary
payloads of the binary consensus messages are flipped.
The goal of this behavior is to reduce throughput and
increase latency.

Byz2 The Byzantine proposers form a coalition in order to
maximize the bandwidth cost of the reliable broadcast
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Tokyo Seoul Mum. Singa. Syd. Cana. Frank. Ireland Lond. São P. N.Virg Ohio N.Cal. Oregon
Tokyo 0 551 129 240 161 106 74 66.4 59 55.4 90.1 96.2 129 132
Seoul 33 0 137 157 141 91.5 54 60.8 54.7 56.6 84.2 114 84.2 116

Mumbai 133 164 0 121 67 90.9 176 178 145 46.7 81.9 80.5 69.1 64.2
Singapore 69 100 67 0 90.9 83.2 90.7 86.1 90.4 40.8 59.5 64.9 80.5 77.3

Sydney 106 135 235 170 0 77.1 61.3 53.8 51.2 40.2 74.9 99.7 135 119
Canada 166 185 196 220 225 0 166 250 164 159 808 760 205 168

Frankfurt 244 275 112 178 292 102 0 477 823 92.9 222 220 144 85.7
Ireland 226 246 122 188 286 78 25 0 829 114 185 183 104 117
London 255 284 111 179 281 90 15 12 0 107 190 195 107 85.5

São Paulo 271 293 302 328 332 125 210 184 192 0 131 124 77.7 81.7
N. Virginia 162 209 182 238 205 15 89 85 76 122 0 827 232 186

Ohio 169 199 193 227 196 25 99 91 87 131 13 0 428 219
N. California 120 150 262 178 148 76 148 142 138 182 64 52 0 681

Oregon 105 135 235 163 162 66 164 141 158 183 76 71 22 0

TABLE III
HEATMAP OF THE BANDWIDTH (MBPS) IN THE TOP RIGHT TRIANGLE AND LATENCY (MS) IN THE BOTTOM LEFT TRIANGLE BETWEEN 14 AWS REGIONS

#Replicas #Requesters Valid-tx/sec Async write latency(ms) Latency(ms) Valid-tx/superblock Invalid-tx/superblock

1000 8400 30684 238 3103 95407 378

TABLE IV
PERFORMANCE OF RBBC WITH 1000 REPLICAS SPREAD IN 14 DATACENTERS
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Fig. 11. Comparing bandwidth usage and latency of RBBFT and HBBFT
with normal and Byzantine behaviors on 100 geodistributed nodes

using the digests described in §V-B. As a result, for any
reliable broadcast initiated by a Byzantine proposer, t+1
correct proposers will deliver the full message while the
remaining t will only deliver the digest of the message,
meaning they will have to request the full message from
t+ 1 different proposers from whom they receive ECHO
messages.

Experiments are run with 100 low-end machines using the
same 5 datacenters from US and Europe and with n proposers
(as in §VII-B). Figure 10 shows the impact of Byz1 on
performance with n proposers and proposal sizes of 100.
RBBC throughput drops from 5700 TPS to 1900 TPS due to
having t less proposals being accepted (the proposals sent by
Byzantine proposers are invalid) and to the increase in latency.
The latency increases due to the extra rounds needed to be
executed by the binary consensus to terminate with 0. The
throughput of HBBFT drops from 350 to 256 TPS due to fewer
proposals but the latency decreases because with less proposals

erasure codes require less computation.
Byz2 is designed against the verified reliable broadcast

of §V-B, to delay the delivery of the message to t of the
correct proposers, and increasing the bandwidth used. HBBFT
avoids this problem by using erasure codes, but has a higher
bandwidth usage in the correct case. Figure 11 shows its
impact on bandwidth usage and latency for RBBC and HBBFT
with n proposers and proposal sizes of 100. The bandwidth
usage of RBBC increases from 538 MB to 2622 MB per
multivalued consensus instance compared to HBBFT, which
uses 3600 MB in all cases. Furthermore, the latency of RBBC
increases from 920 ms to 2300 ms.

Regarding corruptions, as it is impossible to solve consensus
when t ≥ n/3 [60], one must either replace the permissioned
nodes [87] before n/3 collude, or implement an eventually
consistent alternative of the service [78].

VIII. CONCLUSION

Blockchains tend to adopt an open permissioned model
where a subset of the nodes with some permissions (e.g., PoS)
can decide upon the next block. RBBC is the first of these
that does not need synchrony to scale to hundreds of geo-
distributed permissioned nodes. To this end, it solves the Set
Byzantine Consensus problem, adopts a leaderless design that
offers censorship-resistance and introduces sharded verifica-
tion. World-wide experiments demonstrate that it triples the
performance of its closest competitor.
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APPENDIX

A. Proofs of a Scalable Censorship-Resistant RSM

In this section, we show that RBBC is a censorship-resistant
replicated state machine (RSM) that totally orders correct
transactions and we give bounds on its theoretical throughput.

1) Proof that RBBC implements an RSM: We show that our
verified reliable broadcast ensures the properties of the reliable
broadcast for valid values and discards invalid values, then we
prove that our consensus protocol solves the Set Byzantine
Consensus problem before showing that RBBC implements
an RSM.

Theorem 4: The Verified Reliable Broadcast (lines 1–13)
ensures the properties of the Reliable Broadcast for all valid
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values and does not deliver an invalid value at any correct
proposer.
Proof. We proceed by showing the properties of reliable
broadcast for a valid value: if a valid value is delivered then
it was broadcast (validity), a correct proposer delivers at most
one value from any given proposer (unicity), if a correct
proposer broadcasts a valid value v then v is delivered at
all correct proposers (termination1) and if a correct proposer
delivers a valid value v, then all correct proposers deliver v
(termination2). It is easy to ensure validity and unicity, so let
us focus on termination1 and termination2. Consider that a
valid value v is broadcast by some proposer pi. There are two
cases to consider, either pi is correct or Byzantine.

1) Proposer pi is correct. Proposer pi broadcasts INIT to
all proposers, hence each proposer broadcasts ECHO to
all, and all correct proposers eventually receive ECHO
messages with v from n − t distinct correct proposers.
These correct proposers, say Q, are thus ready to start
verifying value v. As there are t + 1 primary verifiers
and t secondary verifiers, there are up to 2t+ 1 verifiers,
say Q′, that will verify value v if not stopped at line 10.
If t + 1 verifiers broadcast READY messages with the
same verification outcome verif , then we know that all
correct proposers will then retransmit READY with this
verif , which will guarantee that all correct proposers will
receive n− t messages 〈READY, verif , h(v), pi〉 and will
thus deliver v (line 13). It thus remains to show that t+1
verifiers will broadcast READY messages with the same
verification outcome verif . Note that |Q ∩ Q′| ≥ t + 1,
which means that among the correct proposers Q, t+1 of
them verify v and obtain the same verification outcome
verif that they broadcast.

2) Proposer pi is Byzantine. First, if proposer pi broadcasts
INIT successfully to all n − t correct proposers, in
which case, they all broadcast ECHO with value v to all
proposers and the case is identical to case (1), where all
correct proposers deliver v (line 13). In the case where
proposer pi does not broadcasts INIT to t + 1 correct
proposers because it broadcasts to less proposers, then
not enough proposers will receive INIT for ECHO to be
received by sufficiently many proposers at line 5 and v
will not be delivered. Third, if proposer pi broadcasts
INIT to t+1 ≤ ` < n−t proposers, then it depends on the
behaviors of the other Byzantine proposers, if sufficiently
many of them send ECHO messages to t+1 verifiers or if
they help verifying correctly, then v will be delivered at
all correct proposers, otherwise, it will not be delivered
at any correct proposer.

To show that no invalid values can be delivered at any correct
proposer, consider that v is invalid so there cannot be t + 1
distinct verifiers whose verif is identifying v as valid. As
a result, if line 9 is enabled with t + 1 identical messages
〈READY, verif , h(v), pi〉 from distinct proposers then we know
that verif is necessarily identifying v as invalid and the
precondition to deliver v at line 13 will not be satisfied. 2

Lemma 1: In the Byzantine binary consensus (lines 31–48),
if at the beginning of a round r, all correct proposers have
the same estimate val , they never change their estimate value
thereafter.
Proof. Let us assume that all correct processes (which are at
least n − t > t + 1) have the same estimate val when they
start round r. Hence, they all bv-broadcast the same message
EST(val) either at line 15 or within the reliable broadcast
at line 32. It follows from the properties of the reliable
broadcast [13] and bv-broadcast [72] that each correct process
pi is such that cvalsi = {v} at line 38, and consequently can
broadcast only ECHO({v}) at line 39. Considering any correct
process pi, it then follows from the predicate of line 42 (si
contains only v), the predicate of line 43 (si is a singleton),
and the assignment of line 45, that val i keeps the value v. 2

The next lemma states that if the value s in the same round
of two correct replicas are singletons then they are identical.

Lemma 2: Let pi and pj be two correct proposers. In the
Byzantine binary consensus (lines 31–48), if si = {v} and
sj = {w} in the same round, then v = w.
Proof. Let pi be a correct proposer such that si = {v}.
It follows from line 42 that pi received the same message
AUX({v}) from (n− t) different processes, i.e., from at least
(n − 2t) different correct processes. As n − 2t ≥ t + 1, this
means that pi received the message AUX({v}) from a set Qi

including at least (t+ 1) different correct proposers.
Let pj be a correct proposer such that sj = {w}. Hence, pj

received AUX({w}) from a set Qj of at least (n− t) different
proposers. As (n−t)+(t+1) > n, it follows that Qi∩Qj 6= ∅.
Let pk ∈ Qi∩Qj . As pk ∈ Qi, it is a correct proposer. Hence,
at line 39, pk sent the same AUX message to pi and pj , and
we consequently have v = w. 2

Lemma 3 (Binary Consensus Validity): In the Byzantine
binary consensus (lines 31–48), the value decided by a correct
proposer was proposed by a correct proposer.
Proof. Let us consider the round r = 1. Due to the property
of the bv-broadcast executed at line 15 or piggybacked within
the reliable broadcast at line 32, it follows that the sets
cvalsi contains only values proposed by correct proposers.
Consequently, the correct proposers broadcast, at line 39
AUX messages containing sets with values proposed only by
correct proposers. It then follows from the predicate of line 42
(si ⊆ cvalsi), and the reliable and bv-broadcast properties,
that the set si of each correct proposer contains only values
proposed by correct proposers. Hence, the assignment of val i
(be it at line 44 or 46) provides it with a value proposed by a
correct proposer. The same reasoning applies to rounds r = 2,
r = 3, etc., which concludes the proof of the lemma. 2

Lemma 4 (Binary Consensus Agreement): In the Byzantine
binary consensus (lines 31–48), no two correct replicas decide
different values.
Proof. Let r be the first round during which a correct proposer
decides, let pi be a correct proposer that decides in round r
(line 45), and let v be the value it decides. Hence, we have
sri = {v} where v = (r mod 2).
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If another correct replica pj decides during round r, we have
srj = {w}, and, due to Lemma 2, we have w = v. Hence, all
correct proposers that decide in round r, decide v. Moreover,
each correct proposer that decides in round r has previously
assigned v = (r mod 2) to its local estimate si.

Let pj be a correct proposer that does not decide in round
r. As sri = {v}, and pj does not decide in round r, it follows
from Lemma 2 that we cannot have srj = {1 − v}, and
consequently srj = {0, 1}. Hence, in round r, pj executes
line 44, where it assigns the value (r mod 2) = v to its local
estimate val j .

It follows that all correct proposers start round (r+ 1) with
the same local estimate v = r mod 2. Due to Lemma 1, they
keep this estimate value forever. Hence, no different value can
be decided in a future round by a correct proposer that has
not decided during round r, which concludes the proof of the
lemma. 2

Lemma 5: During the RBBC consensus (lines 14–23) exe-
cution, at least one binary consensus instance decides 1.
Proof. By Theorem 4, we know that all correct proposers
eventually populate their proposal array with at least one
common value. Due to the reduction, all correct proposers
will thus have input 1 for the corresponding binary consensus
instance. By the validity (Lemma 3) and termination [22]
properties of the binary consensus, the decided value for this
binary consensus instance has to be 1. 2

Lemma 6: If a Byzantine binary consensus instance at index
i decides 1, then the verified reliable broadcast (lines 1–13) at
index i reliably delivers a value at a correct proposer.
Proof. A correct proposer does not propose 1 to a binary
consensus instance at index i without reliably delivering a
proposal at index i. The result follows from Theorem 4 and
the validity of the binary consensus (Lemma 3). 2

Theorem 5 (Set Byzantine Consensus): The RBBC consen-
sus (lines 14–23) solves the Set Byzantine Consensus.
Proof. By Lemma 5, at one index, a binary consensus instance
terminates with 1. By Lemma 4, we know that all correct
proposers have set 1 to the same indices of their bitmask .
For each of these indices k there is a proposal props[k] that
will be delivered at every correct proposer by Lemma 6. As a
result, all correct proposers invoke function reconciliate with
the same argument at line 23. By examination of the code at
lines 24–29, all correct proposers thus put in their superblock
the same subset of valid and non-conflicting transactions hence
guaranteeing all properties of the SBC problem (§III). 2

Theorem 1 (Replicated State Machine): In RBBC, all correct
replicas observe the same sequence of committed transactions,
which are all valid and non-conflicting.
Proof. In RBBC, all permissioned nodes run the consensus
algorithm either because they receive messages from proposers
or because they propose themselves (§V-A[Ë]). Each node
starts by running a single instance of this consensus algorithm
for the block at index 1 (after the genesis block). A proposer
can start a new consensus instance for a block at index j > 1

only after the consensus instance at index j−1 has terminated.
As Theorem 5 shows that consensus guarantees agreement
there is a single block decided per index of the blockchain
at correct permissioned nodes. It results that blocks are totally
ordered through their index number: whenever a block is
decided, it is ordered after all previously decided blocks. Given
that in each block the transactions do not conflict and are
ordered through the same deterministic strategy employed by
all correct permissioned nodes (lines 24–29), transactions are
replicated by t+1 correct permissioned nodes in the same total
order. By examination of the code, all committed transactions
are valid and non-conflicting because RBBC discards the
incorrectly signed transactions eagerly (line 13) and the non-
provisioned and conflicting transactions lazily (lines 28). 2

Theorem 2 (Scalable throughput): Let m be the number of
transactions proposed to the Set Byzantine Consensus by each
proposer and let n = |P | be the number of proposers. Assume
that proposals are all reliably delivered before the algorithm
times out (line 17) but that all dn3 e − 1 Byzantine proposers
do not propose any transaction. The Set Byzantine Consensus
commits between 2m (as n tends to infinity) and Ω(n) distinct
transactions.
Proof. Note that correct requesters must send their transaction
to t+ 1 proposers to guarantee that it will be committed. As
a result, the same transaction could appear in the proposal of
different proposers.
• Consider the worst case scenario where all the duplicated

transactions of all requesters are proposed to the same
consensus instance. As a result there are at most A = m ·
(b 2n3 c+1) transactions and each transaction is duplicated
B = bn3 c + 1 times. We thus end up having A/B
transactions committed such that limn→∞A/B = 2m.

• Consider the best case scenario where each requester
transaction is sent to 1 correct proposer and the t Byzan-
tine proposers. As the Byzantine proposers do not propose
anything, there are no duplicates, and each of the b 2n3 c+1
correct proposers propose m distinct transactions, leading
to m · b 2n3 c + 1 = Ω(n) transactions committed per
consensus instance.

It follows that the minimum number of transactions that can be
committed per consensus instance is 2m as n tends to infinity
and the maximum number is Ω(n). 2

2) Proof of Censorship Resistance: We show that RBBC
is censorship-resistant where 2t < |P | ≤ n in that every
transaction sent by a correct requester to only t+ 1 proposers
is eventually committed.

Lemma 7: Every transaction sent by a correct requester is
eventually proposed by a correct proposer.
Proof. We know by (§V-A[Ê]) that a correct requester sends
its transaction to t + 1 proposers. It follows that at least one
correct proposer receives this transaction. By the bounded-
requesting-rate assumption (§III), we know that this correct
proposer will add it to its mempool and thus propose (line 14)
it to the Set Byzantine Consensus. 2
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Theorem 3 (Censorship-Resistance): Every transaction sent
by a correct requester is eventually included in a superblock.
Proof. By Lemma 7, we know that the transaction tx of a
correct requester is proposed by a correct proposer, say in the
kth proposal. If during the current consensus instance this kth

proposal is included in the superblock, then tx is committed
immediately yielding the result. So let us consider that the kth

proposal is not included, this can happen if the corresponding
binary consensus returned 0 because bitmask [k] = 0. As
the proposer is correct, its proposal will be eventually rb-
delivered by all |P | − t correct proposers. By the bounded-
requesting-rate assumption and because tx is not committed,
these |P |−t proposers record tx in their mempool with a birth
date corresponding to their local clock.

At each multivalue consensus instance, one of the correct
permissioned nodes proposes transactions that get included
in the agreed upon superblock and thus committed. This is
due to the pigeonhole principle applied to the bitmask of |P |
indices among which |P | − t > t correspond to the identifiers
of correct nodes and |P | − t indices map to 1s (line 17).
There is no guarantee that in a given multivalue consensus
instance any correct proposer proposes tx , but as transactions
are proposed in decreasing order of their age, we know that it
will be proposed among the (|P |·T+1) next transactions were
T is the maximum number of transactions in the mempool of
each of the up to |P | correct proposers when it inserts tx in
its mempool. Due to the same pigeonhole argument as before
and because of the sequential-transaction-requests assumption
(§III), transaction tx will be committed. 2

B. Disclosure

Some of the techniques proposed in this paper appear in a
patent application [24] and are taught in a massive open online
course [40].
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