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ABSTRACT
Byzantine fault tolerant consensus protocols are implemented
with consecutive broadcasts but suffer from a low through-
put at large geographical scale or planetary scale. A reason
for this inefficiency is believed to be their all-to-all commu-
nication complexity, which led researchers to design new
consensus protocols with more consecutive one-to-all broad-
casts but cumulatively fewer messages.

We show, through a step-by-step evaluation, ranging from
LAN/WAN broadcast benchmarks to a state machine replica-
tion (SMR) application, that this intuition can be misleading.
In particular, we identify two underestimated factors that
can impact consensus performance much more at a large
scale: (i) the goodput of the broadcast as the rate at which
bits are delivered to the application and (ii) the hiccup or
waiting time between consecutive broadcast phases. Finally,
we show that a leaderless SMR with 𝑂 (𝑛4) complexity can
outperform a leader-based SMR with 𝑂 (𝑛3) complexity by
20×.

This work promotes a new family of byzantine consensus
protocols exclusively based on all-to-all broadcasts that take
into account these two factors. Our result promises to impact
the design of blockchain systems that aim at performing well
in WANs at a planetary scale.

CCS CONCEPTS
• Security and privacy→ Security protocols; •Comput-
ing methodologies → Distributed algorithms.

KEYWORDS
State Machine Replication, Blockchain, Large scale, Broad-
cast

1 INTRODUCTION
There has been a recent resurgence of interest in byzantine
consensus protocol proposals [16, 23, 35] largely driven by
the need to obtain a blockchain system that performs effi-
ciently at large geographical scale or planetary scale. It is well-
known that byzantine consensus solutions are slow at a plan-
etary scale because of their bandwidth usage [11, 30, 31, 33]
but it is hard to pinpoint precisely their bottleneck. In fact,

we know since 1985 that solving this problem requires 𝑛
nodes to exchange a number of messages proportional to the
number 𝑓 of faulty nodes [14], hence leading to an inherent
Ω(𝑛2) message complexity when 𝑓 is a fraction of 𝑛. The
difficulty to improve consensus performance even triggers
an amusing amount of new proposals featuring very similar
communication patterns [25].

The communication pattern [7, 9, 10, 27] of classic byzan-
tine fault tolerant consensus protocols has three subsequent
broadcasts: a one-to-all (O2A) broadcast followed by two con-
secutive all-to-all (A2A) broadcasts as depicted in Figure 1(a).
As there could be 𝑂 (𝑓 ) iterations of this pattern (with some
additional steps to change the leader that initiates the O2A
broadcast), these A2A broadcasts lead typically to a cubic
message complexity. In order to scale, the trend is now to
replace each A2A by O2A broadcasts (followed by its corre-
sponding all-to-one (A2O) responses) to reduce the overall
message complexity of the fast path by a linear multiplica-
tive factor [17, 22, 33, 35] as depicted in Figure 1(b). The
rationale behind this trend seems to be that by reducing the
communication complexity, the limited bandwidth observed
at large scale will no longer be the bottleneck.
In this paper, we show that this intuition can be mislead-

ing, instead, we promote a higher bandwidth consumption
but balanced across the many disjoint routes of aWAN, as de-
picted in Figure 1(c). It follows from a simple observation: at
large scale, saving the bandwidth at one end of the network
does not necessarily compensate for the high consumption
at the other end. In particular, we identify two underesti-
mated factors that impact the performance—these are the
hiccup or waiting times between consecutive broadcasts and
the goodput or the payload transfer rate—and demonstrate
them with broadcasting benchmarks and a state machine
replication application.

First, the observed hiccup shows an inherent asynchrony
among nodes preventing their sequence of broadcasts from
progressing in-sync. It lowers the broadcast performance
by up to 20× in a WAN (Figure 3). Second, the goodput of
the consensus protocol that is expressed as the number of
proposals that end up being decided per consensus instance
has a crucial effect on throughput. We show empirically that
in a WAN, the throughput does not even depend on 𝑛 when
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(a) classic broadcast pattern (b) modern broadcast pattern (c) recommended broadcast pattern

Figure 1: The typical broadcast patterns of various byzantine consensus protocols with 𝑛 = 4 and 𝑓 = 1 and where
𝑝1 is ignored as it is byzantine — triangles indicate O2A and A2O communication steps whereas squares indicate
A2A communication steps

nodes send and receive the same data and themessage header
sizes are negligible compared to the payload sizes. Note that
our planetary scale study does not cover RDMA consensus
protocols [1, 20] well suited for datacenters.
Finally, we illustrate this phenomenon by evaluating ex-

perimentally the performance of two Byzantine fault tolerant
SMRs, HotStuff [33] that is being implemented in Facebook
Libra/Diem blockchain [4] and DBFT [12] as implemented
in Red Belly Blockchain [13, 29], showing a consensus al-
gorithm with communication complexity 𝑂 (𝑛4) can outper-
form another with complexity𝑂 (𝑛3) by up to 20× in a WAN
of up to 150 AWS machines (Figure 7).1
In the remainder, we use c5.xlarge AWS instances with 4

vCPUs and 8GiB of memory each and report the average
values over three runs where error bars depict min and max.
We explain the importance of broadcast in consensus (§2) and
introduce the goodput (§3) before comparing the scalability
of broadcasts in local area networks (LANs) and wide area
networks (WANs) (§4), and under hiccups (§5). Finally, we
apply these observations to consensus and state machine
replication protocols (§6) and conclude (§7).

2 BROADCAST
The broadcast paradigm plays a key role in fault tolerant
distributed protocols, as it allows a node to send some infor-
mation to all nodes in a one-to-all fashion, or O2A for short.
The reason why consensus relies on the broadcast paradigm
is because it aims at tolerating failures. If 𝑓 < 𝑛 nodes can
fail, then it is necessary for a node to send its message to
𝑓 + 1 nodes for at least one non-faulty or correct node to
learn about it. In order to tolerate a significant portion of all
the nodes failing, it is thus necessary to send the messages
to at least Ω(𝑛) nodes, and the broadcast appears ideal.

It is thus not surprising to see that the influential Practical
Byzantine Fault Tolerant (PBFT) consensus protocol [10]
1HotStuff has an Θ(𝑛3) communication complexity because it needs Ω (𝑛)
synchronizations each of Ω (𝑛2) bits for enough participants to reach the
same good view [33].

starts with a leader sending a proposal to the other nodes
with a O2A broadcast. For the nodes to learn fast whether a
proposal is voted upon by sufficiently many nodes, all nodes
can broadcast their vote, hence leading to a linear number of
O2A parallel broadcasts, that we altogether call an all-to-all
broadcast, or A2A for short. Indeed, PBFT then runs A2A
broadcasts for all its nodes to learn the votes and decide as
depicted in Figure 1(a). Interestingly, although there exist
variants [3, 21] with different speculative executions and fast
paths, this pattern is at the core of a large family of byzantine
consensus protocols [7, 9, 27].
Today, however, the communication complexity is be-

lieved to play such an important role in the lack of per-
formance of byzantine consensus at a planetary scale, that
various research groups are redirecting their efforts to erad-
icate these costly A2A broadcasts to reduce the communi-
cation complexity at all costs [17, 22, 33, 35]: increasing the
number of O2A broadcast phases, increasing the workload
of a few (but mostly only one) nodes, adding corresponding
A2O response steps that increase latency, etc. Figure 1(b)
presents the resulting sequence of O2A broadcasts followed
by their response. This is the precise broadcast pattern of
SBFT [17] that aims at achieving high performance at planet
scale. This pattern is shared by HotStuff [33] that is itself at
the core of Pompē [35].

A new type of consensus communication pattern follows
exclusively an A2A message pattern (Figure 1(c)), hence al-
lowing all nodes to collaboratively exchange their input data
in what we will call the cumulative A2A or CA2A (Section 3).
This pattern has been used in DBFT [12], Dispel [30] and
Lyra [34].

3 GOODPUT
As we aim at improving the performance of the consensus
protocols at a planetary scale we focus on the broadcast
goodput, the amount of payload the broadcast can convey
to the overlying application per unit of time. (Note that the
payload typically excludes metadata information like the
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identity of the sender or the information stored in the header
of the message.) To this end, let us consider the goodput that
an A2A broadcast can deliver depending on two ways it is
used during the execution of a consensus protocol:
(1) redundant all-to-all broadcast (RA2A): all the

nodes broadcast the same data. This is the case when
nodes of the classic pattern send a constant-size confir-
mation message to all other nodes and wait to receive
this confirmation from a minimum number (2𝑓 + 1) of
nodes to commit (cf. last A2A of Figure 1(a)).

(2) cumulative all-to-all broadcast (CA2A): all the
nodes broadcast distinct data. This is the case when
each node of the recommended pattern sends a dis-
tinct proposal message to all other nodes and waits to
receive (2𝑓 + 1) proposals from other nodes (cf. first
A2A of Figure 1(c)).

As a result, the goodput of the RA2A broadcast is 𝑂 (1)
whereas the goodput of the CA2A broadcast is Ω(𝑛). As the
CA2A goodput grows with 𝑛 while the RA2A goodput does
not, it seems intuitively that CA2A could be better suited
than RA2A to increase the performance as the system size
increases, a property commonly known as scalability. Note
that this observation has already been quantified in [18]. This
observation could also explain why crash fault tolerant con-
sensus leveraging multiple leaders [26] as well as byzantine
fault tolerant leaderless algorithms [2, 12] were efficient at
large scale. Let us try to confirm this scalability observation
empirically.

4 SCALABILITY
We refer to scalability as the ability for a distributed system
to treat more requests per time unit as its size increases.
More precisely, we consider the system size as the number
of nodes that runs its protocol (e.g., a consensus protocol).
There exist, however, other definitions for distributed system
scalability [28] and an equally important one consider the
size as the distance between machines. This distance is often
expressed in terms of network latency: the distance between
two nodes increases proportional to the network latency and,
sometimes, inversely proportional to the bandwidth. To take
this distance into account, we measure the scalability of the
goodput downloaded per node in a LAN setup where nodes
are close to each other, and in a WAN setup where nodes
are far from each other, by having each node continuously
streaming bytes on all its TCP connections in parallel. Note
that streaming is used here for simplicity, we revisit this
streaming behavior by introducing hiccups in §5.

4.1 LAN broadcast
To compare the performance of O2A, CA2A and RA2A broad-
casts in a LAN, we measure their goodput as the payload
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Figure 2: Download goodput in a LAN setup of the
one-to-all (O2A), redundant and cumulative all-to-all
(RA2A and CA2A) broadcasts

throughput obtained without counting the TCP/IP headers.
The LAN consists of up to 150 AWS c5.xlarge virtual ma-
chines communicating with a latency lower than 1ms and a
10Gbps bandwidth.

Figure 2 shows the download goodput of the broadcasts
depending on the number of nodes. We observe that for the
O2A, RA2A and CA2A broadcasts, the download goodput
decreases following an hyperbolic curve. Indeed, in a broad-
cast, each sender shares its bandwidth between a growing
number of connections. To transmit a constant number of
bits to 𝑛 receivers, each sender thus sends𝑂 (𝑛) bits over the
network, leading to a throughput inversely proportional in
𝑛. Additionally, in the A2A broadcasts, all 𝑛 senders compete
in using the network, in this case, the LAN switches, result-
ing in a total of 𝑂 (𝑛2) exchanged bits. However, despite the
difference in communication complexity, the difference of
throughput between the O2A and the RA2A broadcasts is rel-
atively small. This is because the wire between each sender
to the network switch has a 10Gbps bandwidth, smaller than
the transfer speed of the switches (100Gbps). Consequently,
each sender reaches the bottleneck of its own wire before
saturating the network switches. This limits the competition
between the senders in the A2A broadcasts.

The CA2A broadcast solves a problem that differs from the
one solved by the O2A and RA2A broadcasts, as the receiver
of the CA2A receives a number of bits that grows with the
system size. As a result, it is not surprising that the goodput
of the cumulative CA2A broadcast is significantly larger than
the two other broadcasts. Despite this difference, an A2A
broadcast used as a procedure in a consensus protocol is ac-
counted the same by a communication complexity analysis
whether it is redundant or cumulative. The similar shape
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Figure 3: Download goodput in aWAN setup of one-to-
all (O2A), redundant and cumulative all-to-all (RA2A
and CA2A) broadcasts

between all curves explains why the classic pattern (Fig-
ure 1(a)) seemed well-suited in LANs (e.g., for implementing
NFS [10]).

4.2 WAN broadcast
In the second experiment we compare the throughput of
the O2A, CA2A and RA2A broadcast in a WAN with 200ms
round-trip-time latency and a 400Mpbs bandwidth, set with
the linux tc command, on up to 150 AWS c5.xlarge virtual
machines.
Figure 3 shows the download goodput of the cumulative

all-to-all (CA2A) broadcast depending on the number of
nodes. We observe that the goodput slightly grows until
50 nodes and then stabilizes. This differs from the CA2A
behavior we observed in a LAN setup (see Figure 2) where
the goodput decreases when the number of nodes increases.
In a WAN setup, each process is connected to the network
through a unique dedicated connection, called local loop (or
“last mile”), typically provided by the ISP. The bandwidth of
the local loop is small compared to the bandwidth between
autonomous system routers.
Additionally, as long as nodes are geographically spread

enough, it is unlikely for two routes between any pair of
processes to share a common link or a router, except in local
loops. As a result, there is almost no competition between the
senders to use the network in a WAN setup. Consequently,
for 𝑛 nodes, assuming each process has the same constant
local loop bandwidth of 𝐵, any given node receives 𝐵/𝑛 dis-
tinct bits per second from 𝑛 senders, resulting in a download
throughput of 𝐵. This is why in this WAN setup, the perfor-
mance does not even depend on the number 𝑛 of nodes.

5 HICCUP
A consensus execution is more complex than a broadcast
execution, as it comprises a sequence of broadcast executions
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Figure 4: Download goodput in a WAN setup of a cu-
mulative all-to-all (CA2A) broadcast with hiccup and
stream when the number of participant changes

such that a node starts a second broadcast only after deliver-
ing messages from at least min(𝑓 + 1, 𝑛 − 𝑓 ) distinct nodes
of the previous broadcast or responses as depicted in Fig-
ures 1(a) and 1(b). Each node executes the consensus protocol
by interleaving broadcast phases with periods during which
it actually waits for messages. To evaluate the impact of this
waiting time, we add it to the previously tested broadcasts
in the following experiments.

5.1 Hiccup vs. stream
We refer to a hiccup as the interleaving of broadcasts and
waiting periods in each consensus execution because each
node alternates between active periods where it sends mes-
sages and passive periods where it waits to receive messages.
We refer to each waiting period as a barrier. We now mod-
ify the broadcast benchmark to mimic the hiccup execution.
More precisely, each sender sends a byte sequence of a fixed
size, called batch, to all the other nodes thenwaits to receive a
batch from every other nodes before sending the next batch.
Figure 4 depicts the effect of such a hiccup on the good-

put of a CA2A broadcast execution in the WAN setup with
100KB batches. We observe that the goodput measured in
the stream execution (§2) is significantly higher than in the
hiccup execution for any system size. This can be explained
by the barriers that slow down the hiccup execution and
that are absent from the stream execution. Moreover, as
the system size increases, the effect of the barriers is more
pronounced and the goodput of the hiccup execution starts
dropping while it remains stable in the stream execution.
This observation raises a question: What are the causes of
slow down in the hiccup execution in a WAN?
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Figure 6: Cumulative distribution of the number of
received batches by one node running the consensus
over time for 10-node and 150-node systems in aWAN

5.2 Impact of the batch size on the hiccup
Finally, to better understand how the batch size and the dis-
tance between nodes impact the performance of the hiccup
CA2A broadcast, we vary the batch size, the number of nodes
and round trip time latency between all pairs of nodes.

Figure 5 shows four curves, with a mix of 50ms and 200ms
latencies and 10-node and 150-node system sizes as we in-
crease the batch size from 100 KB to 1MB. First, we observe
that, as the batch size enlarges, the performance increases.
This indicates that fewer barriers is beneficial to performance
and confirms that as the batch size enlarges the hiccup execu-
tion gets more similar to the stream execution we measured
in Figure 4. Second, the communication latency between
pairs of nodes impacts dramatically the performance. This
is due to longer latencies inducing a larger asynchrony be-
tween nodes that increases the length of the barriers.

6 CONSENSUS
We finally compare recent byzantine state machine replica-
tions (SMRs). Note that we are aware of crash fault tolerant
SMRs that partially order commands [15, 24, 26] but we fo-
cus on byzantine and totally ordering SMRs for now: We
use HotStuff [33] that is at the heart of the Facebook Libra
blockchain and the Diem blockchain [4] and DBFT [12] that
is at heart of the Red Belly blockchain [13] and the Smart
Redbelly blockchain [29] and reused the source code from
the authors of HotStuff [33] and the Dispel-seq baseline [30].
HotStuff is the typical consensus protocol building upon
O2A-based broadcasts (Figure 1(b)) to lower the communica-
tion complexity of PBFT from 𝑂 (𝑛4) to 𝑂 (𝑛3), and decides
one proposal (one of the initial batches). DBFT stands for the
Democratic Byzantine Fault Tolerant consensus algorithm,
which is the first formally verified blockchain consensus pro-
tocol [5, 6]. It adopts the message pattern of Figure 1(c) in
that all nodes propose a batch by reliably broadcasting [8]
to others and spawn a binary consensus instance with input
value 1 for each rapidly reliably delivered proposal. It can
decide upon all𝑂 (𝑛) proposals [30] but both its message and
communication complexities are 𝑂 (𝑛4).

6.1 Impact of the scale on the hiccup
To confirm that the hiccup effect increases with the number
of nodes also in the consensus protocols, we now measure
the time it takes for a node to receive the batch messages.
Each node logs the reception time of batches from every
node in each DBFT consensus instance, using its own clock.
The first received batch is considered as 𝑇 = 0 and other
reception times adjusted accordingly.

Figure 6 depicts the cumulative distribution function (CDF)
of the time taken to receive 𝑛 batches on two system sizes,
𝑛 = 10 and 𝑛 = 150 in the WAN setup. As the size and the
number of batches to wait for increases, we observe that
the time spent waiting at a barrier increases. The difference
between the two curves outlines the magnitude of the hiccup
phenomenon in WAN networks: the differences in the time
batches take to reach their destination prevents nodes to
proceed in-sync as opposed to what was previously observed
with in LANs [32].

6.2 Comparing HotStuff and DBFT
Figure 7 compares the performance of DBFT and HotStuff
in a WAN setup of 10 nodes. DBFT offers a lower latency
and a higher throughput than HotStuff and its throughput
improvement increases with the batch sizes. This is expected
given that the CA2A broadcasts outperform significantly the
O2A broadcasts at 𝑛 = 10 in a WAN setup (cf. Figure 3). Just
like the contrast between the CA2A and the RA2A, DBFT
may decide𝑂 (𝑛) proposals, due to its initial A2A (Figure 1(c))
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Figure 7: Throughput and latency of HotStuff and DBFT with a system size of 𝑛 = 10 nodes in a WAN setup when
the proposed batch size changes

Th
ro
ug

hp
ut
(K
op

/s
)

0 200 400 600 800 1000
0

20

40 DBFT HotStuff

Proposal size (KB)
La
te
nc
y
(s)

0 200 400 600 800 1000
0

20
DBFT HotStuff

Proposal size (KB)

Figure 8: Throughput and latency of HotStuff and DBFT with a system size of 𝑛 = 150 nodes in aWAN setup when
the proposed batch size changes

whereas HotStuff decides𝑂 (1) of them due to its initial O2A
(Figure 1(b)). Finally, DBFT’s performance increases with the
batch size as expected, given that a higher batch size reduces
the number of barriers in the hiccup of the C2A2 broadcast
(cf. Figure 5).

Figure 8 compares the performance of DBFT and HotStuff
in a WAN setup of 150 nodes. The performance improve-
ment of DBFT over HotStuff is significantly higher than we
observed at the smaller system size (Figure 7). This is ex-
pected given that, as the scale enlarges, the O2A broadcast of
HotStuff slows down whereas the CA2A of DBFT speeds up
(cf. Figure 3). As a result, the protocol with the 𝑂 (𝑛4) com-
munication complexity is up to 20× faster than the protocol
with the 𝑂 (𝑛3) communication complexity. Note that these
complexities are obtained in the worst case in the presence of
byzantine failures whereas none of the experiments included
the byzantine behaviors leading to the worst-case execution.
That said, even in the good case executions experimented
here, the communication complexity of HotStuff is lower
than the DBFT complexity.

7 CONCLUSION
In this work, we showed that the folklore belief that com-
munication complexity limits performance of byzantine con-
sensus in a WAN is unjustified. In particular, we identify

two underestimated factors that can impact consensus per-
formance much more at a large scale: (i) the goodput of
the broadcast and (ii) the hiccup or waiting time between
consecutive broadcast phases. We showed that a leaderless
SMR, whose consensus has been recently formally verified,
with𝑂 (𝑛4) complexity outperforms a leader-based SMRwith
𝑂 (𝑛3) complexity by 20×.

A concomitant work included the application of these
findings to the development of the Redbelly Blockchain [13].
These efforts recently demonstrated on realistic work-
loads [19] superior performances to classic blockchains that
typically make use of leader-based consensus protocols [29].
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