
Smart Redbelly Blockchain:
Reducing Congestion for Web3

Deepal Tennakoon
University of Sydney

Sydney, Australia
dten6395@uni.sydney.edu.au

Yiding Hua
ETH Zurich

Zurich, Switzerland
yidhua@student.ethz.ch

Vincent Gramoli
University of Sydney

Sydney, Australia
vincent.gramoli@sydney.edu.au

Abstract— Decentralization promises to remedy the drawbacks
of the web by executing decentralized applications (DApps) on
blockchains. Unfortunately, modern blockchains cannot support
realistic web application workloads mainly due to congestion.

We introduce the Smart Redbelly Blockchain (SRBB), a prov-
ably correct permissionless blockchain that reduces congestion
by (1) avoiding redundant propagation and validations of trans-
actions with Transaction Validation and Propagation Reduction
(TVPR) and (2) mitigating the propagation of invalid transactions
within blocks by Byzantine nodes with a dedicated Reward-
Penalty Mechanism (RPM). Our comparison of SRBB against
Algorand, Avalanche, Diem, Ethereum, Quorum, and Solana,
using the DIABLO benchmark suite, indicates that SRBB out-
performs all these blockchains under real application workloads.
Moreover, SRBB is the only blockchain to successfully execute
real workloads of NASDAQ and Uber on a DApp without losing
transactions. To demonstrate that TVPR and RPM are the causes
of the improved performance, we compare SRBB with its naive
baseline, which does not contain TVPR and RPM. Our results
show that TVPR increases the throughput by 55× and divides the
latency by 3.5, while RPM increases the throughput by 7% under
flooding attacks. Finally, TVPR helps reduce transaction losses
in the normal scenario while RPM goes further and mitigates
transaction losses under flooding attacks.

Index Terms—Blockchain, Web3, performance

I. INTRODUCTION

Decentralization promises to remedy some of the weak-
nesses of the web, including data exposures [1], user manipu-
lations [2], and outages [3]. The idea, often called Web3, is to
execute Decentralized Applications (DApps) on blockchains.
Unfortunately, Web3 remains hypothetical as blockchains suf-
fer from congestion when requests are received faster than they
can be treated, leading to the saturation of their transaction
queues. Congestion leads to transaction losses and perfor-
mance degradation. Not only is this problem common to the
oldest DApp-enabled blockchain, Ethereum [4], but also to
one of the most recent and fastest blockchains, Solana [5].
Finally, a recent in-depth study demonstrated that, due to con-
gestion, 6 modern blockchains lose transactions and degrade
in performance when executing DApps under real application
workloads [6]. Therefore, to decentralize the web, one has to
first address this congestion problem in blockchains induced
by realistic DApps workloads.

We identify two important causes of congestion in the
modern blockchain design that leads to transaction losses and
performance degradation. First, every transaction is propagated

across the network of validators and validated at each validator
leading to as many validations as there are validators. Thus,
the transaction validation is redundant. After the validation
of transactions, validators include transactions in blocks and
propagate them again as part of a block across the network.
Thus, transactions are propagated redundantly, first individ-
ually and then in blocks. As we see in Section V, this
initial redundant validation and propagation of transactions
cause congestion leading to transaction losses and performance
degradation. Second, malicious (or Byzantine) validators can
include invalid transactions in blocks and broadcast such
blocks to the network of validators. This can spam the network
with invalid transactions in what we coin as a flooding
attack causing unnecessary consumption of node resources
and network bandwidth, leading to congestion and in turn to
transaction losses (Section V-B).

In this work, we present Smart Redbelly Blockchain (SRBB),
a provably correct permissionless blockchain that reduces the
congestion, transaction losses, and performance degradation
seen in modern blockchains due to the two aforementioned
causes of congestion. To reduce congestion, SRBB introduces
two novel contributions: (1) TVPR (Transaction Validation and
Propagation Reduction) and (2) Reward-Penalty Mechanism
(RPM). TVPR does not propagate transactions individually
among nodes but only propagates transactions in blocks (Sec-
tion IV), hence preventing the redundant validation and prop-
agation of transactions without impacting the core blockchain
properties of safety, liveness and validity (Section II-C). To
prevent congestion induced by Byzantine validators perform-
ing flooding attacks with invalid transactions, SRBB intro-
duces RPM. SRBB uses the superblock optimization [7] of the
Red Belly Blockchain (RBBC) and the Democratic Byzantine
Fault Tolerant (DBFT) consensus protocol [8] (hence its name)
but unlike RBBC, SRBB supports smart contract execution.

To demonstrate that mitigating congestion is key, we show
SRBB outperforms 6 modern blockchains under realistic
DApp workloads (Section V). Moreover, SRBB is the only
blockchain to not lose transactions under certain realistic
DApp workloads. In summary, our contributions include:
• A permissionless blockchain, Smart Redbelly Blockchain

(SRBB), that (i) prevents the redundant validation and
propagation of transactions found in modern blockchains
and (ii) mitigates the propagation of invalid transactions

by malicious validators. SRBB uses TVPR for (i) and
RPM for (ii). We prove that despite introducing TVPR
and RPM, SRBB solves the blockchain problem, ensuring
liveness, safety, and validity (Theorem 2).

• To better assess the advantage of TVPR and RPM, we
compared SRBB with a baseline, which is a “naive”
smart contract supported version of RBBC combining
the DBFT consensus algorithm with the superblock opti-
mization applied to the Ethereum Virtual Machine (EVM)
but without our novel contributions of TVPR and RPM.
Our results show that TVPR increases the throughput of
the baseline by 55× and divides the baseline latency by
3.5 (Section V-A). RPM increases the throughput of the
baseline by 7% under flooding attacks (Table I). Lastly,
both TVPR and RPM reduce transaction losses.

• To demonstrate the improvements of SRBB over modern
blockchains in a common and fair setting, we used
the DIABLO benchmark suite [6] with its recommended
settings and real DApp workloads. We compared SRBB’s
performance against the reported performances of Algo-
rand, Avalanche, Diem, Ethereum, Quorum and Solana.
When deployed across the globe to execute a demanding
FIFA web service workload on a DApp, SRBB commits
twice as many transactions compared to the evaluated
6 modern blockchains in DIABLO. More interestingly,
SRBB is the only blockchain out of the evaluated
blockchains in DIABLO to commit all transactions for
the application workloads of NASDAQ and Uber.

There may be highly demanding real workloads out of many
untested workloads that SRBB may not support. Thus, we
consider SRBB which encapsulates TVPR and RPM only
as a stepping stone in the journey to reducing blockchain
congestion for realizing Web3.

The remainder of this paper is structured as follows: Sec-
tion II presents the background and Section III presents the
problems in modern blockchains. Section IV presents SRBB
(with TVPR and RPM) and proves it correct. Section V eval-
uates SRBB and Section VI discusses it. Finally, Section VII
presents our related work and Section VIII concludes.

II. BACKGROUND

A. Blockchain Background

Blockchain nodes are mainly client nodes or validator (i.e.,
miner) nodes. Client nodes send read and write requests to
the blockchain. The term “client” is used to define implemen-
tations of Ethereum (e.g., Geth client – Ethereum’s Golang
implementation) by the Ethereum community but we identify
a “client” solely as a sender of requests to the blockchain.
Validators solve consensus to agree upon the order of client
write requests, execute client requests, and services client
read requests. Validators that follow the blockchain protocol
(e.g., propose blocks with valid transactions, do not censor
transactions) are correct while those that deviate are Byzantine.
Clients have accounts in the blockchain that hold their digital
assets. An account contains an address (the identifier of the

account derived from the account holder’s public key), and
a balance (the amount of funds in the account). Transactions
are write requests sent by clients to the blockchain and are of
three main types: native payments that transfer funds between
accounts, smart contract deployments that upload smart con-
tracts to the blockchain, and smart contract invocations that
invoke functions in uploaded smart contracts. A transaction
has a sender and receiver address, and additional data (i.e., the
amount of assets transferred if a native payment transaction or
smart contract data if a smart contract transaction). Two trans-
actions can conflict if they access the same data (e.g., smart
contract variable) and one transaction is a write request [9].
A block is a batch of transactions.

In blockchains, validators execute blocks consisting of trans-
actions submitted by clients. Upon executing each transaction
in a block, validators update the balances of the sender and
receiver addresses according to the amount of assets specified
in the transaction. This is known as updating the blockchain
state. Validators finally append the executed blocks to a chain
of blocks known as the blockchain.

B. Transaction Validation

To check that a transaction is valid, all validators in modern
blockchains validate each transaction twice:

Eager validation: Eager validation occurs when a validator
receives a transaction either from another validator or a client.
It then verifies amongst other things whether the transaction
is properly signed, the sender account has sufficient coins,
and the transaction does not exceed a specified size limit.
If eager validation of a transaction succeeds, the validator
pushes the transaction to a pending queue in the transaction
pool (this makes a transaction eligible to be included in a
block by a validator) and propagates the valid transaction
to downstream peers (i.e., validators connected to the local
node that have not seen the transaction before), eventually
propagating the valid transaction throughout the network and
having it eagerly validated at every validator. If the eager
validation fails, validators drop the invalid transaction.

Lazy validation: Lazy validation occurs before the trans-
actions in a block are executed and checks the nonce and
the availability of gas (i.e., the cost required to execute a
transaction). Thus, lazy validation is less time-consuming than
eager validation. This lazy validation is necessary to guarantee
that transactions in a newly received block are indeed valid
prior to execution.

In Section III, we describe why eager validations are exces-
sive in modern blockchains.

C. The Blockchain problem

We refer to the blockchain problem as the problem of
ensuring the safety and liveness properties of blockchains
taken from the definition by Garay et al. [10] and the classic
validity property [7].

Definition 1 (The Blockchain Problem): The blockchain
problem is to ensure that a distributed set of validators main-

2

tain a sequence of transaction blocks such that the following
properties hold:
• Liveness: if a correct validator receives a valid transac-

tion, then this transaction is eventually reliably stored in
the block sequence of all correct validators.

• Safety: the two chains of blocks maintained locally by
two correct validators are either identical or one is a prefix
of the other.

• Validity: each block appended to the blockchain of each
correct validator is a set of valid and non-conflicting
transactions.

The safety property does not require correct validators to
share the same chain because one validator may already have
received the latest block before another. When the chain is
identical at two validators, then the state of these two validators
generated deterministically from the blocks in the chain is
identical.

III. PROBLEMS IN MODERN BLOCKCHAINS

In this section, we define the redundant eager validation and
propagation of transactions problem, and the invalid propaga-
tion of transactions problem in modern blockchains. These
problems cause congestion and thereby transaction losses and
performance degradation.

A. Redundant eager validation and transaction propagation

Many modern blockchains [11], [12], [13], [14], [15],
[16] follow a protocol where validators first eagerly validate
transactions received from clients or peer validators (Alg. 1,
line 5), add these transactions to their transaction pool pending
queue if valid (Alg. 1, line 7) and propagate each valid
transaction individually to the network of validators (Alg. 1,
line 9). Thus, every transaction in the blockchain initially gets
eagerly validated at every validator node (Alg. 1, line 5) and
propagated individually throughout the blockchain network of
validators (Alg. 1, line 9). The transactions in the transaction
pool pending queue of validators get included in blocks and
propagated again as part of blocks (Alg. 1, lines 11- 13).

The initial propagation of individual transactions among
validators is redundant and unnecessary since transactions are
propagated in blocks. All valid transactions either end up in
decided blocks and are executed (Alg. 1, line 21) or are pushed
to the transaction pool pending queue at a validator from a
received valid block, to be included in future blocks (Alg. 1,
line 31). Thus, all valid transactions are propagated to every
validator through blocks and eventually executed regardless
of the initial transaction propagation. The eager validation
of transactions at every validator except the first validator
receiving the transaction is also redundant and unnecessary,
as transactions are lazily validated prior to execution. Even if
lazy validation succeeds for an invalid transaction due to lazy
validation being weaker than eager validation, the transaction
will fail at execution time by throwing an error (Alg. 1,
line 36). Thus, the invalid transaction will have no impact
on the blockchain state. In fact, we prove SRBB preserves
liveness, safety, and validity without the initial propagation and

Fig. 1: The modern blockchain protocol and TVPR modifica-
tion are represented graphically on a high level.

eager validation of transactions (Section II-C). Due to unnec-
essarily eager validating and propagating transactions, we term
this problem as the redundant eager validation and propagation
of transactions. In our evaluation (Section V), we show the
congestion impacts of this problem through transaction losses
and performance (i.e., throughput and latency) degradation in
modern blockchains under realistic DApp workloads.

B. Invalid transaction propagation

The invalid transaction propagation problem occurs when
Byzantine validators propagate invalid transactions in blocks.
This can happen when Byzantine validators falsely eagerly
validate or skip the eager validation of transactions received
from clients and peers but include such invalid transactions
in blocks nonetheless and propagate them to the network of
validators. Propagating invalid transactions in blocks does not
cost anything to the validator but can cause transaction losses
and performance degradation in modern blockchains due to
the following reasons: (1) validators use extra CPU cycles
eagerly validating invalid transactions that are dropped without
contributing to the throughput and (2) the network bandwidth
is consumed unnecessarily.

While mechanisms to ban validators that propagate invalid
transactions can be implemented, such methods can be inef-
fective. For example, it is unclear whether banning validators
is effective. Since banning validators include blocking a val-
idator’s address, a banned validator can easily derive a new
wallet address and participate in the blockchain again [17].

Therefore, modern blockchains do not offer banning mech-
anisms in their implementation [11], [13], [18], [19], [14].
There are however, frameworks like flashbots1 that can inte-
grate validator bans in blockchains. Flashbots is known to be
centralized [20]. This was also revealed by its latest Tornado
Cash censorship2.

In Section V-B, we notice transaction losses and perfor-
mance degradation in modern blockchains caused by con-
gestion when Byzantine validators propagate invalid transac-

1https://github.com/flashbots/block-validation-geth
2https://time.com/6223034/ethereum-merge-sanctions-flashbots/

3

tions. Thus, to mitigate Byzantine validators proposing invalid
transactions, in Section IV-F, we present a novel RPM that
slashes validators for propagating invalid transactions in blocks
and rewards validators for proposing valid blocks. Unlike
conventional validator banning methods like flashbots3, RPM
is decentralized and does not suffer from censorship issues.
This is because RPM punishes validators for including invalid
transactions in blocks using a decentralized smart contract-
based method. While in conventional validator banning meth-
ods, validators can derive new wallet address and rejoin the
blockchain, the slashing of stake integrated to RPM disin-
centivizes validators to rejoin the blockchain with new wallet
addresses and re-propagate invalid transactions.

IV. SOLUTION: SMART REDBELLY BLOCKCHAIN

In this section, we present SRBB, a permissionless
blockchain that (1) prevents the redundant validation and
propagation of transactions and (2) mitigates the propagation
of invalid transactions. SRBB integrates TVPR to prevent the
redundant validation and propagation of transactions, and a
novel reward-penalty protocol to mitigate the propagation of
invalid transactions. In addition, SRBB is compatible with
the largest ecosystem of DApps, optimally resilient against
Byzantine failures, and supports real DApp workloads like
NASDAQ, Uber, and FIFA (Section V).

First, we present our assumptions followed by TVPR which
is a part of SRBB and prevents the redundant eager val-
idation and propagation of transactions problem in modern
blockchains. Second, we present the transaction life cycle of
SRBB followed by the SRBB Virtual Machine (VM) imple-
mentation. Third, we discuss the membership and committee
reconfiguration of SRBB followed by the novel reward mech-
anism of SRBB coined RPM that mitigates the invalid trans-
actions propagation problem in modern blockchains. Finally,
we prove SRBB solves the Blockchain Problem (Definition 1).

A. Assumptions

Our network consists of a set of validators V that are well-
connected. As consensus cannot be solved in the asynchronous
setting, we assume partially synchronous4 communication [21]
and out of n SRBB validators, at most f are Byzantine
where f < n/3 (consensus is unsolvable in this model
if f ≥ n/3). Byzantine validators can act arbitrarily like
proposing conflicting blocks and invalid transactions. Several
blockchains [22], [23], [24] reconfigure their committee of
n validators every epoch (i.e., a pre-specified unit of time)
to mitigate a majority of the committee from being bribed
by a slowly-adaptive adversary. A slowly-adaptive adversary
is defined as a malicious entity that can bribe validators
progressively (not instantaneously) and only between epochs
(not during an epoch) such that the total corrupted validators

3https://time.com/6223034/ethereum-merge-sanctions-flashbots/
4There exists an unknown Global Stabilization Time (GST) and a known

positive duration δ such that message delays are bounded by δ after GST.
In practice, we cope with partially synchronous communication by increasing
timeouts [7].

is f where f < n/3 at any time [23]. As n validators
cannot reach consensus if f ≥ n/3 validators are corrupt
through bribery, the assumption of a slowly-adaptive adver-
sary prevents consensus disagreements and double spending
attacks. Therefore, we make the assumption that the adversary
is slowly-adaptive similar to many prior works [22], [23].

B. TVPR (Transaction Validation and Propagation Reduction)

In TVPR, instead of validators eagerly validating and prop-
agating transactions received from peer validators individually,
validators only eagerly validate transactions received directly
from clients. These validated transactions are then included
in blocks and propagated. In other words, we get rid of
step (3) in Figure 1 of the modern blockchain protocol
where each validator individually propagates transactions to
peers to produce TVPR outlined as Transaction Validation
and Propagation Reduction. When considering Alg. 1, we
remove Alg. 1, line 9 to prevent validators from propagating
transactions (i.e., broadcasting transactions) individually to
peers. This way, validators do not require to eagerly validate
and propagate transactions received from peer validators. To
be more precise, in modern blockchains during transaction
propagation if the number of validators is n, a transaction t is
eagerly validated n times, whereas TVPR eagerly validates
a transaction t once (i.e., only the validator receiving the
transaction directly from the client eagerly validates it). Thus,
we remove the redundant eager validation and propagation
of transactions. Note that transactions are still included in
blocks and propagated. In Section IV-D we discuss in detail
how reducing the eager validation of transactions does not
cause the execution of invalid transactions. In Section V-A,
we present the throughput improvements and latency and
transaction losses reductions of integrating TVPR to SRBB
compared to modern blockchains. The potential drawbacks of
TVPR are deferred to the discussion section (Section VI).

C. Transaction life cycle of SRBB

We now present the transaction life cycle of SRBB. An
SRBB node consists of the SRBB VM and SRBB consensus.
The SRBB VM is built upon Geth and integrates with TVPR.
SRBB consensus uses the DBFT consensus protocol [8] com-
bined with the superblock optimization of RBBC [7]. When
describing the transaction life cycle of SRBB, we do not
dwell deeply on the consensus as it is not our contribution.
Instead, we give sufficient information to understand SRBB in
its entirety highlighting our novelties. We refer the reader to
[8], [7] for more details on the consensus protocol.

A transaction submitted by a client to SRBB goes through
the stages below:

1. Reception: The client creates a properly signed transac-
tion and sends it to at least one SRBB validator where the
transaction is eagerly validated (Alg. 1, line 5). If the eager
validation fails, the transaction is discarded. Otherwise, the
transactions are kept in a pending queue in the transaction
pool (Alg. 1, line 7). Unlike in modern blockchains where
transactions are propagated individually to all validators (i.e.,

4

Algorithm 1 Smart Redbelly Blockchain protocol
1: State:
2: blockchain , an array of blocks, initially
3: blockchain[0] = genesis-block

4: receive(t): #t received from neighbors or directly from clients
5: if eager-validate(t) then #if eager validation succeeds
6: if t ̸∈ blockchain and t ̸∈ p then
7: p ← p ∪ t #add to txpool pending queue
8: if TTL of t not exceeded then
9: propagate(t) #modern blockchains do this but SRBB does not

10: propose(p):
11: bi ← create-block-with(p1) #create a b from p1 ⊂ p

12: p ← p − p1 #remove txs used to create b from txpool
13: propagate(bi) #block propagation

14: Upon reception of B for index k s.t. B←
⋃n

i=1 bi:
15: for all invalid bi ∈ B do
16: B← B− bi #discard blocks with invalid headers
17: DBFT(B) #execute DBFT cons.
18: if decide(B∗) then #decide B∗ s.t. B∗ ⊆ B
19: for all bi ∈ B∗ starting from i = 1 do
20: for t ∈ bi do
21: err ← execute(t)
22: if err ̸= null then
23: discard(t) #remove invalid t from bi

24: if bi ̸= null then #bi has transactions
25: blockchain[k] = bi #insert to permanent chain
26: k++
27: C← B− B∗ #undecided set of blocks
28: for all bi ∈ C do
29: for t ∈ bi and t ̸∈ blockchain and t ̸∈ p do
30: if eager-validate(t) then
31: p ← p ∪ t #add t to txpool queue to be included in a future block

32: execute(t):
33: err ← lazy-validate(t) #lazy validation
34: if err ̸= null then
35: return err
36: Sr, err ← ApplyTransaction(t ,Si) #Apply t on state Si

37: if err ̸= null then
38: return err
39: else
40: return null

Alg. 1, line 9), SRBB simply includes transactions in blocks
and propagates blocks to the network, hence implementing our
TVPR solution. In fact, SRBB is, as far as we know, the only
blockchain to build upon TVPR. For index k of the blockchain
every correct SRBB validator propagates a block bi s.t. i is
the ID of the SRBB validator and i ∈ Z+.

2. Consensus: An SRBB validator, after receiving a set of
blocks B from peer validators for index k where B←

⋃n
i=1 bi,

discards blocks that contain invalid headers from B, executes
the DBFT consensus [8] (Alg 1, line 17) on B and decides
a superblock B∗ at Alg. 1, line 18. Subsequently, the SRBB
validator sends the superblock to the SRBB VM for execution
(Alg. 1, lines 19-26). An SRBB validator adds transactions
from the set of blocks received from validator peers that are not
decided by DBFT consensus [8] (i.e., C) to their transaction
pool to be included in future blocks (Alg. 1, line 31). We refer
the reader to DBFT [8] and RBBC [7] for more details on the
consensus and the superblock respectively. Note that the only

similarity between SRBB and RBBC is this consensus phase.
RBBC does not support the execution of smart contracts or
DApps and does not have TVPR and RPM.

3. Commit: An SRBB VM, upon receiving the superblock
B∗, takes a block bi at a time from the B∗, iterates through
its transactions (Alg. 1, line 20), and attempts to execute
them (Alg. 1, line 21). In the execution process, first the
SRBB VM lazy validates the transaction (Alg. 1, line 33). If a
transaction’s lazy validation succeeds, the SRBB VM attempts
to apply the transaction to the current blockchain state (Alg. 1,
line 36). A state transition for executing a transaction only
occurs if the transaction is valid and non-conflicting. Since
lazy validation is not as strict as eager validation (Section II),
a transaction may pass the lazy validation but still be invalid.
The SRBB VM like modern blockchains handles such cases by
throwing an error without transitioning state (Alg. 1, line 38).
If either the lazy validation fails or applying the transaction
fails that means the transaction is invalid. The SRBB VM in
this scenario discards the invalid transaction from the block bi
(Alg. 1, line 23) and moves on to the next transaction in the
block. Subsequently, bi is appended to the blockchain (Alg. 1,
line 25) and the SRBB VM moves to the next block in the
superblock. The SRBB VM follows the same procedure to
process the subsequent blocks in the superblock until all the
valid blocks are written to the blockchain.

D. SRBB VM Implementation

The SRBB VM is ported from Geth and changed to prevent
redundant eager validation and propagation of transactions by
integrating TVPR. We integrated TVPR into the EVM by
disabling the initial individual transaction propagation among
validators. This way the first SRBB node receiving transactions
from clients, eagerly validates and includes the transactions in
blocks and propagates them to the network. One might think
that SRBB allows the execution of invalid transactions because
a transaction is eagerly validated only once by a SRBB
validator and then lazily validated at each SRBB validator
prior to execution, where the lazy validation is not as strict
as the eager validation. Note that the reduction of transaction
validations does not cause the execution of invalid transactions
in SRBB. Instead in the case of invalid transactions, the SRBB
execution throws an exception. More precisely, a transaction is
valid only if (i) the transaction is properly signed, (ii) its size
does not exceed a limit, (iii) its nonce is the next sequence
number, (iv) its gas cost is covered by the sender balance, (v)
its transferred amount is covered by the sender balance. The
lazy validation checks (iii), (iv), (v) whereas the execution
checks (i) and (ii). The Geth implementation5 which SRBB
builds upon, raises an ErrInvalidSig exception if (i) is not
satisfied. Overflow and VM exceptions are raised if (ii) is not
satisfied.6

5L635 of ethereum/go-ethereum/blob/master/core/types/transaction.go of
commit c4a6621

6L187-219 of ethereum/go-ethereum/blob/master/core/vm/interpreter.go,
and ethereum/go-ethereum/blob/master/core/vm/errors.go.

5

Implementing TVPR may sound trivial, but it involved
changing the convoluted Geth implementation which required
a deep dive into the implementation details of Ethereum and
talking to Ethereum core developers. In total, we changed 161
LOC (Lines of Code). These changes included: (1) disabling
the event that notifies successful eager validation of each trans-
action to the function that broadcasts transactions individually
and (2) disabling functions that handle individual transactions
received from peers.

E. Membership and committee reconfiguration

SRBB is a permissionless blockchain. An SRBB node can
either be a client that sends transactions and reads the state
of the blockchain or a validator that participates in consensus,
executes transactions, and keeps a full state of the ledger to
service clients. To be a candidate validator (i.e., a candidate
validator is an applicant to the validator position), an SRBB
node must deposit some tokens (i.e., each validator must de-
posit a pre-defined sum of ether – a unit of cryptocurrency used
in Ethereum) to a committee reconfiguration smart contract.
Afterward, the committee reconfiguration protocol randomly
selects a set of candidate validators as validators known
as the committee. These validators are rotated periodically,
mitigating the committee from being bribed by a slowly-
adaptive adversary. Each candidate is eventually selected as
a validator because the selection is random and periodic.
The requirement to deposit tokens to be a candidate validator
provides a form of Sybil resistance making it costly for a single
user to assume the identities of multiple candidate validators.
Note that a high deposit may impact, in theory, transaction
fees. This is because one needs to set transaction fees high
enough to exceed the payout from a Sybil-attacking coalition
that is willing to spend enough deposits to seize control of the
protocol. To alleviate this stress on the transaction fees, the
validator deposit is recoverable after a locked period like in
the design of PoS protocols [25].

F. Reward-penalty mechanism (RPM) for SRBB validators

For a network of n SRBB validators, we assumed pre-
viously that there are more than 2n/3 correct validators
(Section IV-A). In the real world, however, validators behave
rationally: they may behave selfishly and try to maximize
rewards instead of blindly following the protocol. Thus, a
reward-penalty mechanism (RPM) incentivizing correct behav-
iors while penalizing Byzantine behaviors is essential to ensure
validators remain correct and continue to propose blocks.

With modern blockchains and with SRBB, the invalid trans-
action propagation problem (Section III) exists as Byzantine
validators can propose invalid transactions in blocks that are
propagated to the network. To cope with this problem we
introduced RPM as a part of SRBB. In a rational validator
setting, it makes sense for validators to increase their gains by
bypassing eager validation and proposing invalid transactions
in blocks to save validation costs. RPM incentivizes rational
validators to not propose invalid transactions within blocks and
propagate such blocks. As a result, RPM mitigates transaction

Algorithm 2 The Reward-Penalty Mechanism
1: Initial State:
2: For block b: ht , Pk and Sk are the hash of its txs, the block sender pub and priv

keys resp.
3: CertB ← {Pk , (ht)Sk } is the certificate of a block
4: T is the set of transactions in b where t ∈ T
5: rb is a constant block reward
6: c is the cost of eager validating a transaction
7: count is (h → val) where count is a map between a hash and its count
8: NB is the block number
9: i is the block index in the superblock and round is the consensus round

10: propReceived(CertB ,T , i , round): #validators invoke when block decided
11: if invoked[hash(i, round)] == true then #already invok. for b in i , round
12: exit #exit function
13: invoked[hash(i, round)] = true
14: Pk , (ht)Sk ← retrieve(CertB) #retrieve data from Cert
15: addressv ← derive(Pk) #derive address of block proposer
16: if addressv ̸∈ V then
17: exit #invalid CertB , return function
18: else
19: ht ← Pk ((ht)Sk) #retrieve hash of transactions from Cert
20: if hash(T) == ht then
21: count[hash(Pk ,T , i, r)]← count[hash(Pk ,T , i, r)] + 1 #inc. count
22: if count[hash(Pk ,T , i, r)] == n-t then #thresh. decided the same block
23: address ← derive(Pk) #derive address of block proposer
24: I ← rb #incentive
25: C ← |T | · c #cost of eager validating transactions in b
26: R ← I − C #calculate reward
27: K [address] = K [address] + R #add reward to proposer deposit
28: count[hash(Pk ,T)] = 0 #reset count
29: report(CertB ,NB , t ,T): #Report validator Cert. block number and transaction
30: Pk , (ht)Sk ← retrieve(CertB) #retrieve data from Cert
31: address ← derive(Pk)
32: ht ← Pk ((ht)Sk) #retrieve hash of transactions from Cert
33: if addressv ̸∈ V or hash(T) ̸= ht or t ̸∈ T then
34: exit #invalid CertB or false report, return function
35: else
36: count[hash(Pk ,NB , t)] = count[hash(Pk ,NB , t)]+1 #inc. report count
37: if count[hash(Pk ,NB , t)] = n-t then #thresh. val. reported invalid t
38: address ← derive(Pk) #derive validator that added invalid-tx
39: K [address] = K [address]− P #reduce byz. validators deposit by P
40: for all v ∈ V and v ̸= address do #distribute penalty with validators
41: K [v] = K [v] + P/(|V | − 1)

42: emit address #emit byz. validator event

losses and performance degradation (Table I). Like many
blockchain reward mechanisms, RPM also rewards validators
in a consensus round for proposing blocks. To the best of our
knowledge, none of the reward and penalty mechanisms miti-
gate the propagation of invalid transactions within blocks [26],
[27], [28], [29], [30].

Since we assumed a slowly-adaptive adversary previously
(Section IV-A) the formation of a Byzantine coalition is
mitigated by reconfiguring the committee as it takes time for a
slowly-adaptive adversary to form a Byzantine coalition. Note
that we do not discuss in depth the avoidance of Byzantine
coalitions in RPM as it is outside the scope of this work.
Instead, we assume that the formation of a Byzantine coalition
is mitigated by committee reconfiguration which prevents
rationals from deciding on conflicting blocks and double-
spending.

We now define the block proposal game followed by a novel
RPM for SRBB to mitigate invalid transaction propagation,
followed by a reward design for RPM based on game theory.
Finally, we prove our RPM incentivizes rational validators to
not propagate invalid transactions within blocks.

a) The block proposal game: We use game theory to
model the strategies of SRBB validators. We define a game G

6

per consensus round as a tuple (V, S, U) where V is the set
of players who are SRBB validators, S is the set of strategies
followed by players and U is the pay-off (i.e., reward or
penalty) for each strategy.

A validator could follow a correct strategy or a Byzan-
tine strategy. We consider the correct strategy as a validator
proposing valid blocks (i.e., blocks with valid transactions) by
properly eagerly validating transactions before including them
in blocks. A Byzantine strategy is when a validator proposes
invalid blocks by propagating invalid transactions in blocks
(e.g., not eagerly validating transactions to save costs). Our
goal is to design rewards for strategies so that the best strategy
for a rational validator to follow is the correct strategy.

b) Reward-Penalty Mechanism: We present our RPM in
Alg. 2. Earlier, we assumed out of n validators, at most f are
Byzantine where f < n/3 (Section IV-A). As the committee
progresses we assume that validators behave rationally.

Upon deciding on a superblock, validators invoke a
propReceived function for each block in the decided su-
perblock parsing the block proposer’s certificate CertB , the
set of transactions T in the block, the index of the block in
the superblock i and the consensus round r (Alg. 2, line 10).
The certificate of the block proposer CertB consists of the
public key of the block proposer Pk and the signed hash of
the transactions in the block (ht)Sk

where ht is the hash of
transactions and Sk is the private key of the block proposer.
Thus, CertB = {Pk, (ht)Sk

}. Alg. 2, line 12 exits if a
validator invokes propReceived more than once for the same
i and r (i.e., prevents duplicate invocations). One validator
cannot parse the same CertB and T more than once to the
propReceived function either as there is a checker preventing
this, although not included in Alg. 2 for brevity. For each invo-
cation of propReceived by a distinct validator, RPM retrieves
data from the certificate CertB (Alg. 2, line 14) and checks the
validity of CertB by verifying whether the addressv derived
from Pk is in the validator set of addresses V (Alg. 2, line 16).
If not, CertB is invalid and proposed by a non-validator so
the propReceived function exits (Alg. 2, line 34). Otherwise,
RPM retrieves ht from (ht)Sk

(Alg. 2, line 19) and checks if
the hash of T (i.e., hash(T)) is equal to ht (Alg. 2, line 20),
verifying whether the block proposer with Pk proposed a block
with transactions T . If hashes are equal, Alg. 2 increments
the propReceived invocation count for a block in a superblock
for a particular Pk and T (Alg. 2, line 21). If at least n − t
validators have decided on a superblock with a block b that has
the same T and Pk, RPM derives address from Pk, calculates
the reward from Alg 2, lines 24- 26 (i.e., Section IV-F presents
the reward design in detail) and increases the deposit of the
proposer of the block that is included in the decided superblock
(Alg. 2, line 27). Finally, when the epoch ends, the tokens
added to a validator’s deposit exceeding Dv are funded to the
validator’s wallet address (i.e., not included here for brevity).

Invoking propReceived is in the best interest of a ratio-
nal validator due to the following reason: If a validator v1
eventually does not invoke propReceived for a decided block
b1 proposed by validator v2 then v2 may also decide not to

invoke propReceived for a decided block b2 proposed by v1.
This could result in both blocks proposed by v1 and v2 not
reaching the n−t threshold and receiving a reward accordingly
(Alg. 2).

RPM penalizes rational validators that propose blocks in-
cluding invalid transactions in the following way: upon notic-
ing an invalid transaction in a block that is part of a decided
superblock, validators become reporters invoking report in
Alg. 2, line 29 parsing CertB (i.e., certificate of the block
proposer that contained the invalid transaction), NB (i.e.,
the block number containing the invalid transaction), t (i.e.,
the invalid transaction), and T (i.e., the set of transactions
T in NB). Then the validity of CertB is verified and the
function exits if an invalidity is noticed (Alg 2, lines 30- 34)
avoiding false reporting. Otherwise, a count is incremented
corresponding to the number of validators that observed the
invalid transaction t in block NB proposed by the block
proposer with public key Pk (Alg. 2, line 36). If at least
n− t validators have made the same report (Alg. 2, line 37),
then the Byzantine validator that proposed a block with invalid
transactions receives a penalty P s.t. P = K[address], which
is deducted from her deposit (Alg. 2, line 39) leaving the
deposit at 0. The deducted penalty is then equally distributed
among the other validators in the committee (Alg. 2, line 41).
In RPM validators lose deposits only if they propose a block
that includes invalid transactions (Alg. 2, line 39). Correct
validators eagerly validate each transaction before inclusion
in a block proposal. As such, correct validators do not lose
their deposit. Finally, an event is emitted containing the wallet
address of the Byzantine validator (Alg. 2, line 42). All
correct validators listen to this event and exclude the Byzantine
validator from future communications within the committee.

Alg 2 contains a block reward value rb, an incentive I ,
an eager validation cost c, and a cumulative reward R for
including a block in a superblock. The goal is to design these
rewards in a way that the best strategy for a validator to follow
is the correct strategy. Next, we present our reward design.

c) Reward design: Let us consider R as the cumulative
reward for proposing a block, I as the incentive, C as the
cost of eager validating all transactions in a block, P as the
amount deducted in Ether from a validator’s deposit if the
validator follows a Byzantine strategy (i.e., the entire current
deposit is taken out), rb as a constant ether value issued to
validators for proposing a block, and

∑Ntx

n=0 Txfees as the total
transaction fees in the proposed block (i.e., the transaction fee
is not included in RPM in Alg. 2 as it is charged separately
at the SRBB VM when transactions are executed). Then the
two reward equations are: R = I − C − P and I = rb +∑Ntx

n=0 Txfees . We do not include double spending rewards
rational validators may gain as double spending is mitigated
through committee reconfiguration.

d) RPM proofs: In this section, we prove that rational
validators will not propose blocks with invalid transactions.

Theorem 1: Rational validators proposing invalid transac-
tions in blocks gain a negative reward.

Proof : If a rational validator proposes invalid transactions

7

in a block to minimize C and thereby increase R (i.e.,
R = I − C), other validators are incentivized to report the
invalid transaction along with the proposing validator (Alg. 2
lines 29- 41). As a result, a penalty P is deducted from the
reported validator’s deposit, and the validator is removed from
the committee (Alg. 2, lines 39 and 42). When a Byzantine
validator’s block with invalid transactions is decided, we know
that they gain a reward of I − C ′ where C ′ < C (i.e.,
Byzantine validators skip eager validation to save cost). If the
initial deposit of the Byzantine validator is D, now it becomes
D′ = D+I−C ′. However, once reported, Byzantine validators
lose P s.t. P = D′ = D + I − C ′. Thus, the Byzantine
validator’s deposit becomes Dend = D + I −C ′ − P leading
to Dend = 0. Thus, the Byzantine validator loses her entire
deposit D. □

From Theorem 1, proposing invalid transactions results in
a validator losing her entire deposit. Rational validators try to
maximize their gains effectively. Therefore, RPM discourages
proposing invalid transactions in blocks.

G. Proofs of correctness: SRBB

Theorem 2: SRBB solves the blockchain problem.
Proof : We prove that each property of Def. 1 is preserved

by SRBB.

Liveness: As a result of removing line 9 of Alg. 1 in SRBB,
transactions are no longer propagated individually to the
network (i.e., among validator peers) and eagerly validated at
each SRBB validator. However, correct validators still create
valid blocks including valid transactions, and propagate them
to peers (Alg. 1, line 13). Thus, every correct SRBB validator
receives a set of blocks B propagated by correct SRBB
validators at index k (Alg. 1, line 14). An SRBB VM decides
a subset of these blocks B∗ and stores the valid transactions
in these decided blocks in the blockchain (Alg. 1, lines 17-
25). The SRBB validator also stores valid transactions of all
received but undecided blocks at index k in the transaction
pool (Alg. 1, lines 27-31). These transactions are eventually re-
included in a future decided block by correct SRBB validators
(Alg. 1, line 11) and stored in the blockchain. Thus, every
transaction received by a correct SRBB validator is eventually
stored in the block sequence of all correct SRBB validators.

Safety: The preservation of safety is proved by contradiction.
If none of the two chains of blocks maintained locally by
any two correct SRBB validators v1 and v2 is a prefix of
one another, it means the superblock B∗ decided at index k
(Alg. 1, line 17) of v1 and the superblock B∗′ decided at index
k of v2 are different. This results in two different transaction
executions (Alg. 1, line 21) for v1 and v2. However, this is
a contradiction because any two correct SRBB validators v1
and v2 should decide on the same superblock at index k due
to consensus guarantees of DBFT [8] (Alg. 1, line 17). Thus,
any two validators v1 and v2 should store the same block b
at index k of the chain (Alg. 1, line 25). Therefore, any two
correct validators should maintain locally an identical chain of
blocks or a chain where one is a prefix of another (i.e., because

blocks do not get decided, executed and stored at the same
time in all SRBB validators) resulting in the same execution.
Thus, through proof by contradiction, SRBB achieves safety.

Validity: Due to the consensus protocol, all correct SRBB
validators decide on the same valid superblock B∗ at index k
(Alg. 1, line 18). This means each block bi in B∗ has valid
headers. If each block bi in the superblock B∗ has a valid set of
transactions, it is appended to the blockchain (Alg. 1, line 25).
Thus, each block appended to the blockchain of each correct
SRBB validator is a set of valid non-conflicting transactions.
□

V. EMPIRICAL EVALUATION

In this section, we present our evaluation of SRBB and its
performance compared to 6 modern blockchains. We evaluated
SRBB using the DIABLO blockchain benchmark suite [6] that
evaluates blockchains against specified workloads by sending
pre-signed transactions. We used the realistic DApp workloads
of NASDAQ, Uber, and FIFA that span 3, 2 and 3 minutes
respectively7. NASDAQ (peak request rate - 19800 TPS, avg.
request rate - 168 TPS) uses a real trace of Apple, Amazon,
Facebook, Microsoft, and Google stock trades executed on
a DApp, Uber (peak request rate - 900 TPS, avg. request
rate - 852 TPS) uses a real trace from the mobility service
Uber executed on a DApp and FIFA (peak request rate -
5305 TPS, avg. request rate - 3483 TPS) uses a real workload
from the soccer world cup executed on a DApp. For the
DApp workload experiments, we used 200 validators spanning
10 AWS regions (i.e., 5 continents), namely: Bahrain, Cape
Town, Milan, Mumbai, N. Virginia, Ohio, Oregon, Stockholm,
Sydney, and Tokyo. For all DApp benchmarks, we used the
same AWS c5.2xlarge EC2 instances (8 vCPUs, 16 GB RAM
– equivalent to a modern-day PC) as DIABLO [6].

Rationale for machine selection: The c5.2xlarge AWS in-
stance type was consistently used throughout all benchmarks
for two reasons. First, to make all results comparable within
our paper and with DIABLO [6]. Second, to make the eval-
uations encompass a wide range of blockchains as some
blockchains require specific CPU and memory requirements
(e.g., Solana) that cannot be met with smaller AWS instances.

In summary, all experimental parameters were the same as
the ones used in DIABLO [6] for realistic DApp evaluation.
Similar to the DIABLO DApp evaluations [6], all workloads
were evaluated with one full experimental iteration.8

Throughout this section, our evaluation focuses on the
throughput, latency and transaction loss of blockchains which
are indicators of blockchain congestion. The throughput is
the number of transactions committed per second as observed
by the client. The latency of a transaction is the difference
between the transaction send time and the transaction commit

7https://github.com/lebdron/minion/tree/aec
8Our discussions and comparisons with the authors of DIABLO revealed

multiple runs of the same DIABLO DApp workload experiments yield minimal
statistical variance in the results due to a long experimental time of∼5 minutes
(i.e., DApp workloads send transactions for 2-3 minutes and blockchains
typically processed these transactions for ∼5 minutes).

8

time (i.e., the time that a client receives sufficiently many
confirmation ACKs for a transaction sent) as seen by the
sending client. The transaction loss is the number of dropped
transactions. With more congestion, a blockchain’s throughput
drops, and latency and transaction losses increase.

In summary, SRBB reached a maximum average throughput
of ˜2000 TPS for realistic DApp workloads. SRBB outper-
formed (i.e., higher throughput, lower latency) 6 modern
blockchains for the realistic DApp workloads of NASDAQ,
Uber, and FIFA [6]. Moreover, SRBB was the only blockchain
out of the evaluated blockchains to not lose transactions for the
realistic DApp workloads of NASDAQ and Uber, and commit
over 98% of transactions for the demanding workload of FIFA.
The higher throughput, lower latency, and fewer transaction
losses of SRBB compared to modern blockchains indicate
SRBB has reduced blockchain congestion.

In this section, first, we compare SRBB with modern
blockchains (Section V-A) for the real DApp workloads
of NASDAQ, Uber and FIFA from the DIABLO blockchain
benchmarking suite [31]. Then we evaluate the benefits in
transaction losses and performance of RPM in SRBB when
Byzantine validators propagate invalid transactions.

A. Comparison with other blockchains

Figures 2 and 3 depict the performance of 6 modern
blockchains (i.e., Algorand, Avalanche, Libra-Diem, Ethereum
Proof-of-Authority, Quorum IBFT, Solana) compared to SRBB
and EVM+DBFT which is a naive smart contract supported
version of RBBC that combines the Ethereum VM with the
superblock optimized DBFT consensus but does not have
TVPR and RPM. The evaluation of EVM+DBFT is included to
show that the performance benefits of SRBB come from TVPR
and not from the prior works of the superblock optimization
and the DBFT consensus of RBBC.

We used the real DApp workloads of NASDAQ, Uber,
and FIFA used in the DIABLO blockchain benchmarking
suite [6] for our evaluation. Evaluating all blockchains in
existence against SRBB is not realistic. We used the 6 modern
blockchains evaluated in DIABLO [6] for comparison against
SRBB because DIABLO reported a thorough evaluation of
these blockchains under realistic DApp workloads [6]. To
make the comparison fair, we simply used the same configura-
tion parameters and DApp workloads as used in DIABLO [6]
when evaluating SRBB.

Note, some blockchains did not yield an average latency or
throughput value for certain workloads (e.g., 0 TPS and 0 s la-
tency) because the transaction costs exceeded their budget [6]
or they crashed due to the high load.

Figure 2 presents the average throughput in the y-axis and
transaction commit percentage as a value at the top of the bar
for the NASDAQ, Uber and FIFA workloads (i.e., depicted by
(N,U,F) in Figure 2 for brevity). SRBB is the only blockchain
to commit 100% of the transactions for the NASDAQ and Uber
workloads. SRBB also commits 98% of transactions for the
demanding FIFA workload where no other blockchain com-
mits more than 47% of transactions. SRBB reaches average

throughputs of 166.61 TPS, 835.15 TPS, and 1819 TPS for the
NASDAQ, Uber and FIFA workloads respectively, which are the
highest average throughputs for all evaluated blockchains. Fig-
ure 3 shows the average latencies for the (N,U,F) workloads.
SRBB yields the least average latency among all evaluated
blockchains for both the NASDAQ and Uber workloads with
average latencies of 6.6 and 3.9 seconds respectively. For the
FIFA workload, SRBB yields an average latency of 64 seconds.
This slightly higher average latency of SRBB over Avalanche,
Diem and Solana in the FIFA workload is due to SRBB
committing 98% of the transactions as opposed to only 2%
or fewer transaction commits in the other blockchains. All 6
modern blockchains yield throughputs lower than 900 TPS and
latencies higher than 20 s. These performances are much lower
compared to their claimed performances [6]. This indicates a
major performance degradation.

Most importantly, SRBB multiplies the average throughput
by 55×, divides the latency by 3.5, and reduces transaction
losses considerably compared to EVM+DBFT. Since the dif-
ference between SRBB and EVM+DBFT is TVPR, TVPR is
responsible for better performance and reduction in transaction
losses and not prior works from RBBC [8], [7].

B. Evaluation of performance with Byzantine validators

Here we present the performance of SRBB when a Byzan-
tine validator propagates invalid transactions. We created in-
valid transactions by setting the balance of the transaction
sender to 0 ETH. More specifically, we compare the average
throughput and transaction losses of SRBB without RPM and
SRBB with RPM. Thus, this evaluation shows the performance
benefits RPM yields considering throughput and transaction
losses. Due to budget constraints, we had to restrict this
benchmark to a single AWS region and the smallest validator
size a BFT blockchain can tolerate9 (i.e., four validators).
More specifically, we performed this benchmark on the Sydney
AWS region with 3 correct and 1 Byzantine validator.

#valid #invalid #Byzantine throughput #valid
txs sent txs sent Validators (TPS) txs dropped

SRBB w/o RPM 20K 10K 1 3998.2 TPS none
SRBB w/ RPM 20K 10K 1 4285.71 TPS none

TABLE I: The average throughput and valid transaction drops
of four SRBB validators where one is Byzantine.

For Table I we used a sending rate of 15000 TPS to
stress test the blockchains. From Table I, it is clear that
despite Byzantine validators propagating invalid transactions,
SRBB did not drop any transactions. RPM integrated with
SRBB showed the best performance by increasing the average
throughput to a stunning 4285 TPS which was 7% higher than
SRBB without RPM. This is because Byzantine validators who
are also rational (i.e., try to maximize their reward) do not
propagate invalid transactions in the presence of RPM as it

9Using many medium sized instances instead of the four c5.2xlarge AWS
instances used in Table I does not overcome our budgetary constraints as
medium sized AWS instances yield minimal savings compared to c5 instances.

9

Algorand Avalanche Diem Ethereum Quorum Solana SRBB EVM+DBFT

(N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F)0

300

600

900

1200

1500

1800

Th
ro

ug
hp

ut
(T

PS
)

55
0 0.4

87
26

1.8 27 0 1.3 16 6 1
88

84 46

62 0 2
100

100

98

0 2 0

Fig. 2: Throughput (y-axis) and commit percentage (top of the
bar) for NASDAQ, Uber and FIFA workloads (i.e., (N,U,F) is
NASDAQ, Uber and FIFA)

(N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F) (N,U,F)0

50

100

150

200

La
te

nc
y

(s
)

Fig. 3: Latency (y-axis) for NASDAQ, Uber and FIFA workloads
(i.e., (N,U,F) is NASDAQ, Uber and FIFA)

deters propagation of invalid transactions by slashing stake.
Thus, RPM helps improve performance.

VI. DISCUSSION

In this section, we discuss the drawbacks of TVPR in SRBB
and discuss how they could be addressed.

Censorship of transactions: In modern blockchains (e.g,
Ethereum) if a validator decides not to include a transaction in
its new block, the said transaction is likely to be included in
another block by another validator eventually due to transac-
tions being propagated to all validators initially. This prevents
censorship. With SRBB since there is no individual trans-
action propagation among validators, if a validator decides
not to include a transaction from a client in its new block,
the transaction becomes censored (i.e., note we consider a
validator that censors transactions as a Byzantine validator).
One solution would be to let a distributed load balancer handle
the censorship problem. A load balancer existing between
clients and validators can randomly forward each transaction
from a client to different SRBB validators to increase the
probability of transaction inclusion in blocks. Even then, a
transaction may be censored if the load balancer forwards
the transaction to a validator that censors it. In this case, if
the client does not receive a transaction receipt as proof of
its execution within a period, the transaction can be resent
by the client and could be forwarded to a different validator
than before by the load balancer due to the randomness in
forwarding. The new validator may not censor the transactions
as the previous validator. If they also censor the transaction,
this entire process can be repeated until a validator that does
not censor the transaction receives it. This process can be
automated to reduce the burden on the client. A Byzantine load
balancer itself may be problematic. In such a case, a client may
require to distribute transactions to multiple load balancers.
We look at a few transaction load balancing and transaction
distribution strategies among multiple load balancer to mitigate
censorship in our future work [32].

Applicability of TVPR to other blockchains: In contrast
to SRBB, implementing TVPR on modern blockchains can
be problematic. Due to removing propagation of transactions

among validators through TVPR, the first validator receiving
a transaction should include it in a block for the transaction
to be eventually executed. If the first validator receiving a
transaction is weak, (e.g., has low probability of creating
blocks), they will rarely win the consenus protocol. Thus,
a client can expect to wait a long time for their transaction
to be included in a block. To prevent this drawback, clients
may submit transactions to the most powerful validators in the
hope of increasing the probability of their transactions being
included in blocks sooner. This can centralize the blockchain
towards a few validators and these few validators can be
overloaded with transactions leading to a DoS.

In SRBB despite having TVPR, clients do not have to wait a
long time for their transactions to be included in a block. This
is because in SRBB, all validators regardless of being weak
or powerful can make block proposals per consensus round
and combine their blocks to create a superblock [7]. More
specifically, since SRBB uses the Red Belly consensus [7]
(Section IV-C.Consensus) there is no single validator winning
one consensus round. Every validator gets to include a block in
the decided superblock per consensus round if every validator
proposes a block. Thus, a transaction sent by a client to
any validator will be included in the superblock in the same
consensus iteration or the next (e.g., with 1000 validators,
a client does not have to wait for 1000 iteration before its
transaction is included in a block as all 1000 validators can
propose blocks per consensus round and include their block
in the decided superblock).

VII. RELATED WORK

In this section, we discuss modern blockchains with redun-
dant eager validation and propagation of transactions that lead
to their congestion under realistic DApp workloads.

Ethereum’s EVM by design redundantly eagerly validates
and propagates transactions. Ethereum validators propagate
every received transaction individually to peer validators even-
tually propagating every transaction throughout the network.
Thus, every transaction is eagerly validated at every validator
redundantly. These transactions are later propagated as part
of blocks as well throughout the network. Thus, transactions
are redundantly propagated as well. Quorum, Binance Smart

10

Chain (BSC), Hyperledger Burrow, and Cardano [13], [19],
[18], [33] blockchains all port the EVM as the state replication
machine and thus have the same redundant eager validation
and propagation of transactions problem.

Algorand [34] also suffers from the redundant eager val-
idation and transaction propagation problem as it gossips
transactions throughout the network where each transaction
is eagerly validated at every validator. These transactions
are redundantly propagated again in blocks. Similarly, Polka-
dot [15], Solana [14], and Tezos [30] suffer from the same
problem despite introducing other optimizations in their state
machine replica.

Avalanche [16] due to its snowman consensus protocol
does not propagate blocks but only transactions. Thus, it only
suffers from part of the problem: redundant eager validation of
transactions. The propagation of transactions is not redundant
as transactions are not propagated twice, once individually and
then in blocks.

VIII. CONCLUSION

In this paper, we introduced SRBB, a provably correct per-
missionless blockchain to mitigate blockchain congestion. We
demonstrated that reducing transaction validations and prop-
agation in normal cases using TVPR and mitigating invalid
transaction propagation under flooding attacks using RPM can
lead to minimal transaction losses and significant performance
improvements in SRBB. These improvements make SRBB
perform significantly better than Algorand, Avalanche, Diem,
Ethereum, Quorum, and Solana when executing DApps under
real workloads. Our future work includes evaluating the
methods of Section VI to mitigate transactions censorship.

ACKNOWLEDGMENTS

This work is supported in part by the Australian Research
Council Future Fellowship funding scheme (#180100496) and
the Ethereum Foundation. We would like to thank Christopher
Natoli and the anonymous reviewers for their feedback on
earlier versions of this paper. Yiding Hua’s work was done at
the University of Sydney.

REFERENCES

[1] M. Isaac and S. Frenkel, “Facebook security breach exposes
accounts of 50 million users,” Sept. 2018, accessed: 2023-02-24.
[Online]. Available: https://www.nytimes.com/2018/09/28/technology/
facebook-hack-data-breach.html

[2] J. Prassl, Humans as a Service: The Promise and Perils of Work in the
Gig Economy. Oxford Press, 2018.

[3] B. Provenzano, “Youtube is down for everyone right now
[update: It’s back],” Nov. 2020, accessed: 2020-11-14. [Online].
Available: https://www.msn.com/en-us/money/other/youtube-is-down-
for-everyone-right-now-update-it-s-back/ar-BB1aVtNh

[4] “Eth network: So congested exchanges are forced to disable eth wallets,”
2022, accessed: 2023-02-24 - https://www.newsbtc.com/news/ethereum-
network-congested-exchanges-forced-disable-eth-wallets/.

[5] “Solana explains reasons behind the recent network slowdown,” 2022,
accessed: 2023-02-24 - https://tinyurl.com/5f6xjbtp.

[6] V. Gramoli, R. Guerraoui, A. Lebedev, C. Natoli, and G. Voron, “DIA-
BLO: A benchmark suite for blockchains,” in 18th European Conference
on Computer Systems (EuroSys), 2023.

[7] T. Crain, C. Natoli, and V. Gramoli, “Red Belly: a secure, fair and
scalable open blockchain,” in IEEE S&P, May 2021, pp. 1501–1518.

[8] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “DBFT: efficient
leaderless Byzantine consensus and its application to blockchains,” in
IEEE NCA, 2018, pp. 1–8.

[9] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Parblockchain: Leveraging
transaction parallelism in permissioned blockchain systems,” in ICDCS,
2019, pp. 1337–1347.

[10] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in EUROCRYPT, 2015, pp. 281–
310.

[11] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[12] “Ethermint,” accessed: 2020-11-14, https://github.com/cosmos/
ethermint.

[13] J. Chase, “Quorum whitepaper,” 2019. [Online]. Avail-
able: https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%
20Whitepaper%20v0.2.pdf

[14] A. Yakovenko, “Solana: A new architecture for a high performance
blockchain v0. 8.13,” Whitepaper, 2018.

[15] J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini, F. Lama,
H. K. Alper, X. Luo, F. Shirazi, A. Stewart, and G. Wood, “Overview of
polkadot and its design considerations,” arXiv, Tech. Rep. 2005.13456,
2020.

[16] T. Rocket, “Snowflake to Avalanche: A novel metastable consensus
protocol family for cryptocurrencies,” Tech. Rep., 2018, accessed: 2021-
12-01.

[17] L. Dobos, “USDC blacklist cost users an extra 3.6 million–per month,”
2022.

[18] C. Kuhlman, B. Bollen, S. Davis, and D. Middleton, “Hyperledger
burrow (formerly eris-db),” Mar. 2017, accessed: 2020-11-14, https://
www.hyperledger.org/wp-content/uploads/2017/06/HIP Burrowv2.pdf.

[19] “Binance smart chain,” 2020, accessed on 2022-07-21, https://github.
com/bnb-chain/whitepaper/blob/master/WHITEPAPER.md.

[20] Y. Wang, P. Zuest, Y. Yao, Z. Lu, and R. Wattenhofer, “Impact and user
perception of sandwich attacks in the defi ecosystem,” in Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems,
2022.

[21] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, pp. pp.288–323, 1988.

[22] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in IEEE S&P, 2018, pp. 583–598.

[23] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in CCS, 2018, p. 931–948.

[24] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, “Solida:
A blockchain protocol based on reconfigurable byzantine consensus,”
arXiv preprint arXiv:1612.02916, 2016.

[25] “Introduction to staking,” 2022, accessed: 2022-12-22, https://wiki.
polkadot.network/docs/learn-staking.

[26] A. Yakovenko, “Solana: A new architecture for a high performance
blockchain v0.8.13,” 2021, accessed: 2021-12-06, https://solana.com/
solana-whitepaper.pdf.

[27] “Slashing,” accessed: 2022-08-09, https://wiki.polkadot.network/docs/
learn-staking#slashing.

[28] “Slashing,” accessed: 2022-08-09, https://consensys.net/blog/codefi/
rewards-and-penalties-on-ethereum-20-phase-0/.

[29] A. Ranchal-Pedrosa and V. Gramoli, “TRAP: The bait of rational players
to solve Byzantine consensus,” in ASIACCS, 2022, p. 168–181.

[30] “The lifecycle of an operation in tezos,” 2019, accessed on 2022-
07-21, https://medium.com/everstake/how-does-slashing-work-in-
tezos-and-why-is-it-important-to-delegate-only-to-reliable-bakers-like-
a6c931e93c56#.

[31] “Diablo: Distributed analytical blockchain benchmark framework,”
2020, accessed: 2022-04-12. [Online]. Available: https://github.com/
NatoliChris/diablo-benchmark

[32] M. Toulouse, H. K. Dai, and Q. L. Nguyen, “A consensus-based load-
balancing algorithm for sharded blockchains,” in Future Data and
Security Engineering. Springer, 2021, pp. 239–259.

[33] “Making the world work better for all,” 2022, accessed on 2022-07-21,
https://cardano.org/.

[34] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in SOSP, 2017, pp.
51–68.

11

